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Double-Difference Tomography: The Method and Its Application

to the Hayward Fault, California

by Haijiang Zhang and Clifford H. Thurber

Abstract We have developed a double-difference (DD) seismic tomography
method that makes use of both absolute and relative arrival times. By reducing sys-
tematic errors using the more accurate relative arrival times, the method produces an
improved velocity model. Simultaneously, it yields event locations of a quality equiv-
alent to those of the DD location method, while avoiding simplifying assumptions
of that method. We test this method on a synthetic dataset and find that it produces
a more accurate velocity model and event locations than standard tomography. We
also test this method on a Hayward fault, California, earthquake dataset spanning
1984-1998. The earthquakes relocated by this method collapse to a thin line along
the fault trace, consistent with previous results. The DD velocity model has sharper
velocity contrasts near the source region than the standard tomography model.

Introduction

Local earthquake tomography (LET) has become a rela-
tively routine application for use in seismically active re-
gions covered by a dense seismic network. Common LET
algorithms, however, do not take advantage of the many
recent developments in earthquake location techniques.
Many of these developments are aimed at improving relative
and/or absolute location accuracy.

The accuracy of event hypocenters is determined by
several factors, including the network geometry, available
phases, and arrival time accuracies (Pavlis, 1986). Due to
the presence of noise, the arrival times picked either manu-
ally or automatically generally have errors (Douglas et al.,
1997). Recent studies have shown substantial improvements
in location precision for earthquakes and explosions when
waveform cross-correlation (WCC) and event-clustering
techniques are used to improve arrival time estimates or
determine high-precision relative arrival times (VanDecar
and Crosson, 1990). Example applications include Mount
St. Helens (Fremont and Malone, 1987); Hawaii (Got et al.,
1994; Rubin et al., 1998); California (Poupinet et al., 1984;
Nadeau et al., 1994; Shearer, 1997; Rubin et al., 1999;
Waldhauser et al., 1999; Waldhauser and Ellsworth, 2000,
2002); the Coso geothermal field, Nevada (Lees, 1998); the
Soultz geothermal field, France (Rowe et al., 2002); and
explosions at the Balapan test site (Phillips er al., 2001;
Thurber et al., 2001). These studies are based on the as-
sumption that waves generated by two similar sources, prop-
agating along similar paths, will generate similar waveforms,
and WCC can then be used to determine precise relative ar-
rival times. These and other studies have demonstrated sub-
stantial improvement in the definition of seismogenic fea-
tures and in the accuracy of relative locations of ground-truth

events that is possible using multiple-event methods with
high-precision absolute or relative arrival time data. In ad-
dition, they have also provided new insight into tectonic pro-
cesses, earthquake recurrence, and earthquake interaction.
We can make an important distinction between the two
fundamentally different ways WCC data have been used:
(1) by directly using relative arrival times to determine rela-
tive event locations (e.g., Fremont and Malone, 1987; Got
et al., 1994; Waldhauser and Ellsworth, 2000) or (2) by ad-
justing absolute arrival time picks to minimize discrepancies
among relative arrival times (Dodge et al., 1995, 1996;
Shearer, 1997; Rowe et al., 2002). The advantage of the
former approach is that it incorporates all the available in-
formation contained within the multitude of relative arrival
time differences with a direct measure of quality (the cor-
relation value) associated explicitly with each datum. A dis-
advantage is that some simplifying assumption needs to be
made to derive the locations from the arrival time differ-
ences. For example, in the methods of Fremont and Malone
(1987) and Got et al. (1994), all events in a cluster have
precisely the same takeoff angle and azimuth to each station.
As a result, the derived locations are ultimately relative, not
absolute, so that some assumption must be made to end up
with useful event coordinates (e.g., final locations are com-
puted relative to a catalog-based cluster centroid). Wald-
hauser and Ellsworth (2000) proposed a different location
algorithm, in which the spatial partial derivatives for a set
of events are evaluated at the current location of each event.
It is assumed, however, that the path anomalies due to ve-
locity heterogeneity are location independent. This assump-
tion is valid for closely spaced events, but is not true for far
apart events. As a result, such far apart event locations may
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be biased due to velocity heterogeneity (Got et al., 1994,
Waldhauser and Ellsworth, 2000; Wolfe, 2002). In contrast,
the latter approach uses the relative arrival times to deter-
mine a much smaller number of adjusted arrival time picks,
but these picks are absolute arrival times and so can be used
to determine absolute locations (in an existing velocity
model, or using tomography).

We have developed a new method that combines the
advantages and avoids the disadvantages of the previous ap-
proaches. It is based on the code hypoDD of Waldhauser
(2001) and makes use of both absolute and relative arrival
time data. The method determines a 3D velocity model
jointly with the absolute and relative event locations. This
approach has the advantage of including relative arrival
times with their quality values along with absolute arrival
times, thereby not discarding valuable information by only
using adjusted picks, and at the same time dispensing with
simplifying assumptions about ray path geometries or path
anomalies and producing absolute locations, not just rela-
tive locations. The velocity model obtained with double-
difference (DD) tomography should also be superior to that
from standard tomography. With standard tomography,
event locations will be somewhat scattered due to imprecise
picks and correlated errors, but in DD tomography, the use
of the differential arrival times (including both the WCC and
catalog time difference data) removes most of these errors,
which will in turn remove some fuzziness from the velocity
model. To demonstrate the effectiveness of the method, we
have applied it to a synthetic dataset based on the idealized
velocity structure of the San Andreas fault in central Cali-
fornia and to the Hayward fault dataset of Waldhauser and
Ellsworth (2002).

DD Tomography

The body-wave arrival time T from an earthquake i to
a seismic station k is expressed using ray theory as a path
integral,

k
T£=fi+Juds, (D)

where 7/ is the origin time of event i, u is the slowness field,
and ds is an element of path length. The source coordinates
(x1, x5, x3), origin times, ray paths, and the slowness field
are the unknowns. The relationship between the arrival time
and the event location is highly nonlinear, so a truncated
Taylor series expansion is generally used to linearize equa-
tion (1). This linearly relates the misfit between the observed
and predicted arrival times 7} to the desired perturbations to
the hypocenter and velocity structure parameters:

>\ T} k
r£=EJM}+ATi+Iéuds. 2)

1
=1 0x

H. Zhang and C. H. Thurber

Subtracting a similar equation for event j observed at station
k from equation (2), we have

S

<.

3 k
== .Ax§+A‘L"+J§uds 3)
=1 i

3 ; k

oTy, . )

- Z—fo/, - At — f&uds.
=1 0xj )i

Assuming that these two events are near each other so that
the paths from the events to a common station are almost
identical and the velocity structure is known, then equation
(3) can be simplified as
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where dr? is the so called double-difference (Waldhauser
and Ellsworth, 2000). This term is the difference between
observed and calculated differential arrival times for the two
events and can also be written as

arf = = = @ = T - @ T ()
The observed differential arrival times (7). — T})°® can be
calculated from both WCC techniques for similar waveforms
and absolute catalog arrival times. Equation (4) is known as
the DD earthquake location algorithm (Waldhauser and Ells-
worth, 2000).

In this approach, earthquake locations may be biased
when interevent distances exceed the scale length of velocity
variations. Waldhauser and Ellsworth (2000) applied a dis-
tance-weighting factor to reduce or exclude data from event
pairs that are far apart. Although the arrival difference data
from such events may be excluded, they can still be linked
in the inversion via a series of intermediate pairs (Got et al.,
1994). For example, the pair T;—T} can be linked if the two
pairs Ti~T" and Ti"-T} are included.

To overcome this limitation, we use the differential ar-
rival time data and equation (3) directly. It is known that
there is a coupling effect between the event hypocenters and
the velocity structure (Thurber, 1992). Our purpose is to
determine not only the relative event locations, but also their
absolute locations and the velocity structure. Also note that
the ray paths from two nearby events will substantially over-
lap, meaning that the model derivatives in equation (3) will
essentially cancel outside the source region. For this reason,
we include the absolute arrival times in the inversion to re-
solve the velocity structure outside the source region. By
doing this, we can jointly determine the velocity structure
and the relative event locations as well as the absolute event
locations accurately.

We developed a DD tomography code tomoDD based
on the DD location code hypoDD (Waldhauser, 2001). In the
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current version of tomoDD, we use the pseudo-bending ray-
tracing algorithm (Um and Thurber, 1987) to find the rays
and calculate the travel times between events and stations.
The model is represented as a regular set of 3D nodes, and
the velocity values are interpolated by using the trilinear
interpolation method. The hypocentral partial derivatives are
calculated from the direction of the ray and the local velocity
at the source (Lee and Stewart, 1981). The ray path is di-
vided into a set of segments, and the model partial deriva-
tives (calculated in terms of fractional slowness perturbation,
so that the derivatives are related to path length) are evalu-
ated by apportioning the derivative to its eight surrounding
nodes according to their interpolation weights on the seg-
ment midpoint (Thurber, 1983). For two rays observed at a
common station, if the model derivatives at the common
inversion node for these two rays are close enough (i.e.,
within 5 m), then we set the corresponding elements to zero
in the model derivative matrix to make the system more
stable. Distance weighting is also used in our DD tomogra-
phy to control the maximum separation between event pairs
and apply greater weight to the closer events, similar to
Waldhauser and Ellsworth (2000).

In our simultaneous inversion for velocity structure and
event locations, velocity anomalies are constrained by seek-
ing a first-order smooth model. Smoothing regularization
should provide a minimum-feature model that contains only
as much as structure as can be resolved above the estimated
level of noise in the data (Constable et al., 1987; Sambridge,
1990; McCaughey and Singh, 1997). We apply the same
smoothing weight to the horizontal and vertical directions.

Three types of data, the absolute arrival times, the cat-
alog differential arrival times, and the WCC data, are used
in the inversion. To combine these three types of data into
one system, we apply a hierarchical weighting scheme dur-
ing the inversion, similar to hypoDD. Waveforms normally
correlate between event pairs only within the same cluster.
The relative locations between two events from different
clusters should be controlled by differential catalog data with
larger event separation. For this reason, we start the inver-
sion by applying greater weight to the catalog data (both
differential and absolute catalog data) to establish the large-
scale result (1 for absolute data, 0.1 for differential catalog
data, and 0.01 for cross-correlation data), similar to hypoDD
(Waldhauser, 2001). Then the catalog differential data are
weighted more to refine the event locations and the velocity
structure near the source regions (1 for differential catalog
data, 0.1 for absolute catalog data, and 0.01 for cross-
correlation data). If WCC data are available, they will then
be weighted even more than the catalog differential data in
a final step to further refine the event locations and the
velocity structure near the source region (1 for cross-
correlation data, 0.01 for differential catalog data, and 0.001
for absolute catalog data). We downweight the differential
catalog data by a factor of 100 in the final stage of the in-
version, as the cross-correlation data are at least an order of
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magnitude more precise than the manual picks (Waldhauser
and Ellsworth, 2000).

The complete system of linear equations (2) and (3),
along with the smoothing constraint equations, is solved by
means of the LSQR algorithm (Paige and Saunders, 1982)
for the damped least-squares problem. Each equation is
weighted according to the a priori data uncertainty, data
type, distance between the event pair, and misfit during each
iteration. The relative weighting for the different data types
and the distance weighting are determined a priori, whereas
the residual weighting is determined a posteriori, with large
residuals rejected or downweighted by a biweight function
(Waldhauser and Ellsworth, 2000). For LSQR, the number
of iterations required to reach a certain accuracy depends
strongly on the scaling of the problem (Paige and Saunders,
1982). Proper scaling of the rows or columns of the matrix
makes it easier to recover the solution. For this reason, be-
fore the system is fed into the LSQR, each column is scaled
so that the L? norm of each column is equal to 1.

Synthetic Test

To assess the effectiveness of the DD seismic tomog-
raphy method, we apply the method to a synthetic dataset.
We use the same synthetic dataset that was constructed based
on an idealized model of the velocity structure of the San
Andreas fault in central California (Kissling et al., 1994).
To the west of the “fault” (x = 0 km), the velocity is constant
(6 km/sec); to the east, there is a very sharp gradient into a
low-velocity zone of 4 km/sec from x = 1 to 5 km, a sharp
gradient to 5 km/sec at x = 6 km, and then a linear increase
from 5 to 6 km/sec in the region between x = 6 and 38 km
(Fig. 1). The X-Y nodes used to represent the velocity model
are shown in Figure 2; in depth, nodes are positioned at 0,
3,7, 11, and 16 km. The events and stations used to construct
the synthetic dataset are from the actual seismicity and
U.S. Geological Survey stations in the Loma Prieta region
(Fig. 2).

We added Gaussian random noise with zero mean and
a standard deviation of 0.04 sec to all the true arrival times.
In addition, we also added a constant noise term to the ar-
rivals at each station from a uniform distribution between
—0.3 and 0.3 sec. This simulates the case that the systematic
errors (model errors and pick bias) associated with the arrival
times are larger than the random ones. We construct the
pseudo cross-correlation data directly from the absolute ar-
rival times by differencing the synthetic arrival times at com-
mon stations for pairs of events within 20 km. As a result,
the cross-correlation data are more accurate than the absolute
data. We note, however, that the synthetic times were pro-
vided to us rounded off to two decimal places, so even the
cross-correlation data have round-off errors up to 0.005 sec.

We first use the DD location algorithm hypoDD to re-
locate the events (Waldhauser, 2001). The 1D velocity
model used is the Dietz and Ellsworth (1990) model, based
on seismic refraction and earthquake data. We use both the
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Figure 1.
thetic velocity model (Kissling ef al., 1994). The true
velocity model in 3D is similar to a “vertical sand-
wich,” with the velocity constant with the depth.

A horizontal slice through the true syn-

residual weighting and distance weighting schemes in the
inversion to control the large residuals, as did Waldhauser
and Ellsworth (2000). The absolute differences between this
set of event relocations and the true locations and their stan-
dard deviations are shown in Table 1. The results indicate
that the event relocations from the DD location algorithm
based on a 1D velocity model have a substantial bias
(>1 km in each coordinate direction) from the true locations.
This bias is caused by a difference between the velocity
model (horizontal layers) used to calculate the DD locations
and the true velocity model (vertical “sandwich”) used to
generate the data. The heterogeneity of the true velocity
model makes path anomalies different for different events.
However, the DD location method assumes that the path
anomalies are location independent, and this assumption in-
troduces bias into event locations (Wolfe, 2002).

We next relocate the events by using our modified DD
location method hypo3DD (hypoDD with 3D raytracing
added) using the true 3D velocity model. In this case, the
arrival time residuals are still only related to the perturba-
tions to the event hypocenters and origin times, not to ve-
locity structure. The DD location method employing the true
velocity model produces much more accurate event locations
than the DD location method based on a 1D velocity model,
as expected (Table 1). The location errors are mainly due to
the noise in the arrival times and the inaccuracies in repre-
senting the true model with sharp gradient changes by a
linearly interpolated grid.

In practice, it is never the case that the true velocity
model is known exactly. Recognizing the coupling effect
between the event locations and the velocity structure (Thur-
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ber, 1992), we next relocate the event locations and deter-
mine velocity structure simultaneously. The standard seis-
mic tomography method uses only the absolute arrival times,
whereas our method uses absolute and differential times.
First, we show the results of applying the standard tomog-
raphy method to the relatively noisy absolute arrival times.
The computational algorithm is identical to that for DD to-
mography, but the differential times are excluded. Both
damping and smoothing (with weight 5.0 in both the hori-
zontal and vertical directions) are applied to the inversion to
make the solution more stable. The same residual weighting
as the DD location method is used. The inversion starts from
the same 1D velocity model as the DD location method. The
inversion grid nodes used are shown in Figure 2. Figure 3a
shows horizontal slices through the velocity structure ob-
tained from the standard tomography. The absolute differ-
ence between this velocity model and the true velocity model
has a median value of 0.164 km/sec, a mean value of 0.245
km/sec, and a standard deviation of 0.249 km/sec. The main
features of the true velocity model are evident in the depth
slices. The event locations have smaller errors than those
from the DD location method (Table 1). The standard to-
mography has the ability to adjust the velocity model and
thus improve the locations. However, the large, variable path
anomalies due to the difference between the hypoDD veloc-
ity model and the actual velocity model make the DD loca-
tions worse than the standard tomography even with more
accurate differential data. This demonstrates how the cou-
pling between the velocity structure and event locations af-
fects the results.

DD seismic tomography uses both the noisy absolute
arrival times and more accurate differential times. We apply
the same damping and the smoothing constraints to stabilize
the solution, with the residual weighting used to penalize the
large residuals during the inversion. The DD seismic tomog-
raphy starts with the same 1D velocity model and uses the
same inversion grid as the standard tomography. Figure 3b
shows the horizontal slices of the velocity structure from the
DD tomography. The absolute difference between this ve-
locity structure and the true velocity structure has a median
value of 0.136 km/sec, a mean value of 0.178 km/sec, and
a standard deviation of 0.164 km/sec. The DD tomography
characterizes well the low-velocity zone of the true velocity
model, especially at the depths of 3 and 7 km. Subtracting
the DD tomography solution and the standard tomography
solution from the true model (Fig. 3c,d), we find that the
velocity model from DD tomography has a more correct
value in the low-velocity trough except at the depth of 0 km,
where the ray paths from event pairs almost completely
overlap and the accuracy of velocity structure is mainly con-
trolled by absolute catalog data. This indicates that DD to-
mography recovers better the low-velocity zone, and overall
the velocity model is more accurate than the standard
tomography. Compared with the standard tomography
method, the DD tomography also produces more accurate
event locations (Table 1).
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Figure 2.  Event locations (filled circles) and stations (open triangles) used for the
synthetic dataset. The inversion grid used in the standard tomography and DD tomog-

raphy solutions is shown as the crosses. The inversion grid points are at X = —35,
—15,0,2,4,6,20,35km, at Y = —60, —40 —20, 0, 20, 40 km, and at Z = 0, 3,
7, 11, 16 km.

Table 1

The Absolute Differences between the True Locations and Those from the DD Location Method
based on 1D Velocity Model, the DD Location Method based on 3D True Velocity Model,
Standard Tomography, and DD Tomography

Median Value (km) Standard Deviation (km)
Latitude Longitude Depth Latitude Longitude Depth
DD location (1D) 1.131 1.235 1.123 0.976 0.941 1.658
DD location (3D) 0.432 0.371 0.296 0.336 0.332 0.479
Standard tomography 0.320 0.295 0.460 0.399 0.342 0.575

DD tomography 0.238 0.218 0.329 0.288 0.314 0.427
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Figure 3.
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Horizontal slices through (a) the velocity model from standard tomog-

raphy, (b) the velocity model from DD tomography. (Continued on next page.)

Application to the Hayward Fault:
Event Locations

We applied the DD tomography method to earthquakes
recorded between 1984 and 1998 by the Northern California
Seismic Network (NCSN) on the Hayward fault, California,
the same dataset as used by Waldhauser and Ellsworth
(2002). The Hayward fault accommodates about 9 mm/yr of
right-lateral relative plate motion between the North Amer-
ican plate and the Pacific plate. Franciscan rocks, consisting
mainly of graywacke mélange with smaller amounts of
chert, shale, mafic volcanic rock, and limestone, form most
of the upper crust to the west of the Hayward fault (Bailey
et al., 1964). In the upper crust to the east of the Hayward
fault, there are folded and thrusted shallow marine sand-
stones and shales of the Great Valley Sequence overlying

the Franciscan terrane (Jennings, 1977). Rocks of the Fran-
ciscan terrane are faster than the Great Valley and younger
sediments (Walter, 1990; Hole et al., 2000).

We utilized 1489 earthquakes with magnitudes from
M 0.2 to 4.5 and 52 stations (Fig. 4). We used 17,955 P-
wave differential arrival times from WCC, in addition to
767,127 P-wave arrival time differences, computed directly
from the absolute catalog arrival times, and 20,257 absolute
catalog P-wave arrival picks. Waldhauser and Ellsworth
(2002) selected the catalog arrival time differences so that
any event is linked to a maximum of 10 neighboring events
by at least eight pair-wise observations. The WCC data are
mainly from the events with similar waveforms along the
fault and are far fewer than the differential catalog data
(Waldhauser and Ellsworth, 2002).
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and true model, and (d) the velocity difference between standard tomography solution
and true model. Black dots indicate the earthquake hypocenters within half the grid
size of the slice.

We use a 1D velocity model as the starting model for
both the DD tomography and standard tomography. The X-
Y nodes of the velocity model grid are shown in Figure 4;
in depth, nodes are placed at 0, 4, 8, 12, and 20 km. Different
smoothing weights of 5, 10, 15, and 30 are tested. The main
features of these models are very similar in the regions with
good ray coverage. In other regions, the model using the
weight of 5 shows some oscillations, which are reduced by
using the larger weights. Considering the trade-off between
the roughness and the stabilization of the model, we choose
the model using weight 10 as our preferred model.

Figure 5a shows the catalog locations, which are scat-
tered along the fault zone. For comparison, we also relocate
the events by using the standard tomography method with

0o % 7=16 km

-10 0 10 0
X (km)

-04 -02 0 02 0.4

(continued) (c) the velocity difference between DD tomography solution

only the absolute catalog data (Fig. 5b). We see that the
event locations are still scattered, comparable to the catalog
locations (Fig. 5a).

Figure 5c,d shows the event relocations by using the DD
location method (Waldhauser and Ellsworth, 2000) and the
DD tomography method, respectively. In the DD location
method, the weighted root mean square (rms) residuals for
cross-correlation data and catalog data decrease from 112 to
3 msec and from 159 to 26 msec, respectively. For the DD
tomography method, the weighted rms residuals for cross-
correlation data and catalog data decrease from 120 to
2 msec and from 176 to 24 msec, respectively (note that the
DD tomography solution includes the 20,257 absolute P-
wave arrival times, which is why the starting rms value is
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Figure 4. Stations (open triangles) and Hayward fault seismicity (filled circles)

between 1984 and 1998 located by the NCSN. The inversion grid used for the standard
tomography and DD tomography solutions is shown as the crosses. The inversion grid
points are at X = —35, —20, —10, —5, —4, —3,0, 5, 10, 20, 35 km, at Y = —30,

—20, —10, 0, 10, 20, 30 km, and at Z = 0, 4, 8, 12, 20 km.

higher). We can see that, after relocation, both DD methods
provide a sharp picture of the seismicity. However, the ab-
solute event locations are different between the two methods.
First, we note that the cluster centroid for the DD location
method is located at latitude 37.721°, longitude — 122.064°,
and depth 7.467 km, whereas it is located at latitude 37.716°,
longitude —122.069°, and depth 6.922 km for the DD to-
mography method. That is, there is a shift of about 632 m
in the horizontal direction and 565 m in the vertical direction
for the cluster centroid.

To compare the event locations in more detail, we zoom
in on the region of latitude 37.83° to 37.91° and longitude
—122.26° to —122.18°. The coordinate center is located at
latitude 37.72° and longitude — 122.06°. The positive Z axis
is downward, and the coordinate system is rotated anticlock-

wise 35° so that the Y axis is nearly parallel to the strike of
the Hayward fault, with Y increasing to the northwest and X
increasing to the northeast. Figures 6, 7, 8, and 9 show map
views and cross sections of event locations for catalog data,
the standard tomography method, the DD location method,
and the DD tomography method, respectively. The seismic-
ity inside the box forms a northwest-striking zone associated
with the Hayward fault, and that outside the box a diffuse
zone of earthquakes about 2 km northeast of the fault zone.
The event locations from the standard tomography method
are still scattered and have very little improvement compared
to the catalog locations (Figs. 6 and 7).

In map view, both DD methods collapse the on-fault
seismicity to a thin line (Figs. 8a and 9a), with most of the
events aligning in depth along horizontal lineations (Figs.
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Figure 5. Hayward fault event locations. (a) NCSN catalog locations. (b) Relocations
by the standard tomography method (i.e., with only absolute catalog data). (c) Relo-
cations by the DD location method (Waldhauser and Ellsworth, 2002). (d) Relocations

by the DD tomography method.

8d and 9d). Although most of the relative event locations
from the two DD methods are quite similar, there are some
differences between them in detail. In map view, an apparent
kink in the seismicity trend at 37.86° N in the hypoDD result
(Fig. 8a) becomes a simpler offset in the tomoDD result
(Fig. 9a). In cross section, the event relocations define a
nearly planar, vertical fault zone striking in the direction of
the surface trace of the Hayward fault in the hypoDD loca-

tions (Fig. 8c). The tomoDD locations, however, show a
near-vertical fault plane between 4 and 8 km depth and a
slight southwest dip between 8 and 12 km depth (Fig. 9c).
We project the event locations in the box into finer slices
(1-km separation in the Y direction) and find that the bend
at the depth of 8 km mainly happens from ¥ = 20 to 23 km.
This is consistent with the velocity complexity in the same
area (see next section).
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Catalog locations in the region of latitude 37.83° to 37.91° and longitude
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ward. (¢) AA’ cross section. (d) BB’ cross section.

Application to the Hayward Fault:
Velocity Structure

Figure 10a,b shows across-strike vertical sections
through the velocity model resulting from DD tomography
and standard tomography, respectively. We see that the
Hayward fault is marked by a strong velocity contrast
(Fig. 10a,b), and this contrast persists vertically beneath the
surface trace of the fault to the maximum depths constrained
by the model, similar to the results shown in Hole et al.
(2000). Higher velocity rocks are located to the west, con-
sistent with the local geological setting. The strong velocity
contrast near the surface is due to the boundary between the
Franciscan terrane and the Great Valley Sequence (Walter,
1990; Hole et al., 2000). Comparing Figure 10a with 10b,
we note that the velocity contrast is sharper in the model
from the DD tomography method. Figure 10c shows the ve-
locity difference between the DD tomography and the stan-
dard tomography. It clearly shows that the velocities from
the DD tomography are faster (about 0.1-0.2 km/sec) than
those from the standard tomography to the west of the fault
and slower (about — (.2 km/sec) to the east of the fault. This
indicates that the DD tomography produces a sharper, and

we presume more accurate, velocity contrast. Due to the
massive amount of differential data, we cannot practically
carry out a full resolution analysis for DD tomography. For
example, estimating the resolution matrix using the method
of Nolet et al. (1999) would require approximately a week
of computation time and further would not yield a reliable
result because our matrix A does not satisfy the assumption
that AAT is diagonally dominant. The current version of
tomoDD does not use parameter separation to decouple the
hypocenter and structure equations (Pavlis and Booker,
1980) and thus is not able to compute the “separated” res-
olution matrix. In the future, this approach will be investi-
gated; however, given that for N observed arrival time data
there will be of order N? differential times, the parameter
separation technique will be extremely slow.

Figure 11a shows the across-strike slices through the
model resolution structure (the diagonal element of the res-
olution matrix) from the standard tomography. The resolu-
tion for the standard tomography is estimated by inputting
the velocity model inverted from DD tomography and using
the solution technique in the simul2000 algorithm (Thurber
and Eberhart-Phillips, 1999), using only the absolute times.
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The model is well resolved (with resolution values > 0.8)
except on the model edges, with a noticeable drop in reso-
lution where the finer gridding is used, as expected. Figure
11b gives the 1-0 uncertainty estimates of the velocity values
from the standard tomography. The errors associated with
velocity values are about 0.2 km/sec for most parts of the
model and are larger (about 0.3-0.4 km/sec) near the edges
of the model. We believe that the resolution and uncertainty
results from the standard tomography provide a realistic and
conservative estimate of the DD tomography solution
quality.

Discussion

Picking errors associated with arrival times generally
consist of a combination of correlated and random contri-
butions. The correlated errors include those related to the
model or structure errors and picking bias. Using the WCC
techniques, both the correlated and random errors are smaller
for the differential arrival times than the absolute arrival
times. Using the more accurate data, the DD tomography
method makes the event locations less scattered than those
from the standard tomography method. As a result, this re-
moves one component of the error in the tomography model
due to the mislocations. Consequently, this makes the ve-
locity contrast sharper (more accurate).

We also obtain the differential arrival times by directly
subtracting catalog arrival times for pairs of events at the
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Same as Figure 6, but for the event locations from the DD tomography method.

common stations. For two events not too far apart from each
other, the velocity heterogeneities along the ray paths have
the same effect on the waveforms and the picking bias may
thus be correlated, as are the model errors. This differencing
process will normally reduce the correlated errors signifi-
cantly, although it may amplify the random errors. Even with
just differential catalog data, Waldhauser and Ellsworth
(2000, 2002) have shown that the events are more accurately
relocated. A test on the Hayward fault dataset also shows
that the events are more concentrated and that the velocity
structure using just absolute and differential catalog data is
somewhat sharper across the fault compared to standard to-
mography. This result indicates that the correlated errors are
generally larger than the random ones, so the differential
catalog data are more accurate than the absolute data overall.

Conclusions

The DD tomography method introduced here is efficient
in relocating large numbers of earthquakes accurately as well
as characterizing the local velocity structure finely. This
method collapses the scattered catalog locations into hori-
zontal lineations of seismicity on the northern Hayward
fault, the same as by the DD location method (Waldhauser
and Ellsworth, 2002). By including the absolute arrival times
in addition to the relative arrival times, our method obtains
the absolute event locations without the assumptions made
in the DD location method.
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the standard tomography and (b) the model uncertainties.

By using the accurate WCC-derived relative arrival
times directly, the DD tomography method is able to sharpen
the image of the velocity structure, especially near the source
region. In particular, we obtain a sharper velocity contrast
along the Hayward fault compared to the standard tomog-
raphy method.
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