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CHAPTER

ONE

INTRODUCTION

This CUSeisTut was created to provide guidance and training for skillsets needed by seismologists. Over ten modules
make up the training process, which are organized into three levels: Entry, Intermediate, and Advanced. The modules
are designed in a step-by-step format and is friendly to students who have no prior expertise in scientific research. After
finishing the online training modules, students are anticipated to develop sophisticated hands-on skills in seismology.

The first module in the Entry Level introduces the basic operation commands in processing the text file in the Linux
system. This module seeks to familiarize users with the Linux environment and operations in terminals. The second
module focuses on the most widely used mapping tool in seismology, The Generic Mapping Tools (GMT). In that
module, we provide instructions for creating a map with various elements, such as earthquake locations, coast lines,
and topography.

Seismology is an observations-based science. The seismograms, the records of ground shakings, include information
about earthquakes and subsurface structures. Therefore, processing seismic data is a fundamental skillset in seismology.
The final module in Entry Level block explains how to use ObsPy, a tool based on Python, to process seismic waveform
data

Users can explore more challenging questions in seismology after being equipped with the skillsets in the Entry Level.
In the intermediate Level training, we provide guidance and codes to illustrate the procedure for detecting and locating
earthquakes from seismic waveform data. Furthermore, we provide the Advanced Level block for users’ interests,
which focuses on two fundamental questions in seismology: how to resolve the earthquake source and earth structure.
Understanding the Advanced Level modules requires more background knowledge in earthquake source physics and
topography theories.

Your feedback will be helpful in developing and improving the CUSeisTut. Feel free to contact us by clicking the “Give
us feedback here”under the Appendix.

CUHK Seismology Lab, 2022, Jan

How to help update/maintain this online document.

1.1 How to contribute

It’s very easy for students to help make contributions to the CUSeisTut

Here are several steps based on github commands:

1. open a terminal in your computer

2. run: git clone https://github.com/JunhaoSong/cuseistut.git

3. enter the cloned directory named “cuseistut” (you will find a hidden local repository named “.git” in the cloned
directory)

3
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4. make modifications

5. after 4, run: git add <modified files/folders>

6. after 5, run: git commit -m “message”

7. after 6, run: git push (username and token are required, please contact Junhao Song for the temporary token.)

steps 5, 6, 7 can be easily understood based on the figure below.

After successfully pushing your modifications, check the updated CUSeisTut website

4 Chapter 1. Introduction
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CHAPTER

TWO

UNIX COMMANDS

The tutorial is based on the Unix system. In this chapter, we will introduce some basic Unix commands that are useful
in later modules. We will introduce basic commands related to Directory management, text file reading, Unix input
and output redirection, and the Pipe command. the file used in this tutorial is the earthquake catalog and station list in
the Banda Arc–Australian Plate Collision Zone (Jiang et al., 2022).

Developed by Po Wang LAM (Ryan) under the instruction of Han CHEN.

2.1 1 Target

Master the basic operation in the directory and file.

Understanding the input and output redirection and the Pipe command.

Make sub-catalogs and sub-station lists based on the Downloaded complete earthquake catalog and save the file in
corresponding directories.

2.2 2 Commands and concept included

Directory management: pwd cd mkdir ls

File reading: more cat wc grep awk

Input and output redirection: > <

Pipe: |

2.3 3 Commands usage and examples

2.3.1 3.1 Directory management

Before any operation, it is important to make sure you are at the correct working directory. First, to know which
directory you are at, you can use the print working directory command pwd. It will print the current working directory
as output in the terminal.

1 $ pwd
2 /current-directory #for illustration only

You are now at current-directory. Then, you should change the current directory to the work directory you want,
here we used the desktop as example, by the command change directory cd.

5
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1 $ cd /home/user/desktop
2 $ pwd
3 /home/user/desktop

Note: The /home/user/desktop here is used as an example. please change it to your own directory accordingly.

Now you are at the /home/user/desktop. Before downloading the data, you may want to create an own directory for
storing them. This can be done by a simple command mkdir.

1 $ mkdir Data_storage

The command ls list the content under current directory. Now run the list files ls command the make sure the
Data_storage is created.

1 $ mkdir ls
2 Data_storage

Now you can change your working directory to Data_storage.

1 $ cd Data_storage
2 $ ls

After running the ls, no output was shown, which means that the directory is now empty.

Tip: Several common commands for dealing with directories

lslist files: List directories and file names

cdchange directorySwitch directory

pwdprint work directoryShow current directory

mkdirmake directoryCreate a new directory

rmdirremove directoryDelete an empty directory

cpcopy file: Copy a file or directory

rmremove: delete file or directory

mvmove file: Move files and directories, or change the names of files and directories

2.3.2 3.2 File reading

3.2.1 Browse documents

Now we can download the catalog file. The file could be download from here. After downloading the catalogue, it
will first be stored in the ~/Downloads. To move the files from ~/Downloads to the directory you created, you may
use the command mv

1 $ pwd
2 Home/user/desktop/Data_storage
3 $ mv ~/Downloads/Unix_command_Materials.tgz ./

(continues on next page)
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(continued from previous page)

4 $ ls
5 Unix_command_Materials.tgz

Note: The directory ~/Downloads here is suitable for Unix system. please change it to your own directory accordingly.

The file was now moved to your working directory. As the file is zipped as a .tgz file, it needs to be unzipped. It can be
done by the command tar

1 $ tar -zxf Unix_command_Materials.tgz
2 $ ls
3 CUSeisTut Unix_command_Materials.tgz

The file was now unzipped and the directory CUSeisTut was create. Change your working directory to the CUSeisTut
and use ls to check the contents.

1 $ cd CUSeisTut
2 $ ls
3 A_Detailed_EQ_Catalog Stations_Info TSR_Paper
4 $ ls A_Detailed_EQ_Catalog
5 banda_arc_catalog.txt
6 $ ls Stations_Info TSR_Paper
7 GE_3_stations.txt YS_30_stations.txt
8 Stations_Info:
9 GE_3_stations.txt YS_30_stations.txt

10

11 TSR_Paper:
12 tsr-2021041.1.pdf tsr-2021041_supplement.docx

We will first look at the earthquake catalog banda_arc_catalog.txt stored in A_Detailed_EQ_Catalog, try to
change your working directory to there.

Before processing the file, we would like to ensure the file is compatible and contains the desired data. There are several
ways for reading a text file from the terminal, we would like to introduce two methods: more cat

1 $ cd A_Detailed_EQ_Catalog
2 $ ls
3 banda_arc_catalog.txt
4 $ more banda_arc_catalog.txt
5 indx year mon day time sec_relative_to_day res lat lon dep mag visual_

→˓flag hypodd_flag
6 2 2014 03 18 16:56:34.260000 60994.2600 0.697 -9.092 124.191 82.1 3.1 1 1
7 3 2014 03 19 14:39:17.472600 52757.4726 1.593 -8.519 126.329 23.2 3.0 1 0
8 4 2014 03 20 15:32:39.914100 55959.9141 0.706 -7.482 127.900 192.6 3.7 1 0
9 5 2014 03 21 15:10:35.760000 54635.7600 1.090 -8.936 124.325 81.2 1.6 1 1

10 6 2014 03 21 18:16:37.720199 65797.7202 1.898 -8.928 125.775 69.8 2.3 1 0
11 7 2014 03 22 08:18:17.449799 29897.4498 1.095 -8.974 125.587 -4.5 3.0 1 0
12 8 2014 03 22 13:57:21.227599 50241.2276 0.792 -9.891 123.950 62.9 3.9 1 0
13 9 2014 03 22 15:43:47.217700 56627.2177 1.546 -8.747 122.528 114.1 2.4 1 0
14 10 2014 03 22 19:23:44.019000 69824.0190 0.642 -7.383 128.098 218.4 2.9 1 0
15 11 2014 03 23 04:37:50.889999 16670.8900 0.787 -9.359 124.140 57.7 3.3 1 1
16 12 2014 03 23 12:16:37.705200 44197.7052 1.017 -10.549 123.603 -4.1 3.3 1 0
17 13 2014 03 24 15:56:41.793600 57401.7936 1.512 -7.118 127.153 152.0 3.0 1 0

(continues on next page)
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(continued from previous page)

18 14 2014 03 24 17:16:01.760000 62161.7600 1.904 -9.108 124.246 68.7 3.1 1 1
19 17 2014 03 25 17:14:15.798098 62055.7981 0.768 -7.407 126.617 199.0 2.5 1 0
20 18 2014 03 25 18:57:23.260000 68243.2600 0.606 -9.000 124.130 75.6 1.8 1 1
21 19 2014 03 26 06:32:57.887500 23577.8875 0.851 -7.449 127.497 166.7 2.6 1 0
22 23 2014 03 29 20:31:47.700000 73907.7000 0.734 -9.381 123.590 82.9 3.0 1 1
23 24 2014 03 31 10:56:15.241300 39375.2413 0.973 -7.424 126.049 23.6 4.1 1 0
24 26 2014 04 01 01:00:36.254898 3636.2549 0.932 -7.614 127.268 188.9 2.9 1 0
25 27 2014 04 02 03:01:25.829400 10885.8294 1.684 -7.507 122.368 21.8 4.4 1 0
26 28 2014 04 02 15:26:23.424199 55583.4242 0.827 -9.073 124.145 37.0 2.4 1 0
27 29 2014 04 02 18:20:08.600000 66008.6000 0.840 -8.897 124.130 78.2 2.2 1 1
28 30 2014 04 02 19:06:23.708500 68783.7085 1.137 -9.317 120.447 131.6 3.3 1 0
29 31 2014 04 03 11:44:25.794800 42265.7948 0.842 -7.779 128.245 218.4 3.5 1 0
30 33 2014 04 04 07:06:34.235300 25594.2353 1.358 -7.970 123.634 119.6 3.6 1 0
31 34 2014 04 04 11:18:03.472600 40683.4726 0.769 -8.941 124.175 14.9 2.4 1 0
32 35 2014 04 04 16:50:22.464900 60622.4649 2.933 -8.011 127.448 115.0 2.2 1 0
33 36 2014 04 05 02:37:26.165300 9446.1653 1.564 -8.899 125.963 -4.5 2.4 1 0
34 --More--(0%)

The more command outputs the first few rows of the file, we can press “Enter” to show more lines. and Press ‘Ctrl+C’
to exit the command.

1 $ cat banda_arc_catalog.txt
2 ......
3 28683 2018 12 29 12:28:05.790000 44885.7900 0.860 -8.220 123.825 180.2 3.5 1␣

→˓1
4 28684 2018 12 29 15:32:39.982800 55959.9828 1.553 -8.846 124.025 66.1 2.0 1␣

→˓0
5 28686 2018 12 29 20:29:02.320000 73742.3200 0.652 -10.036 123.314 31.6 2.3 1␣

→˓1
6 28688 2018 12 30 03:43:30.899300 13410.8993 1.217 -7.994 128.068 183.4 3.7 1␣

→˓0
7 28689 2018 12 30 04:10:53.381499 15053.3815 1.544 -9.896 118.925 33.8 5.0 1␣

→˓0
8 28692 2018 12 30 14:47:19.025200 53239.0252 0.865 -7.788 127.986 176.9 3.5 1␣

→˓0
9 28695 2018 12 30 18:21:30.339600 66090.3396 0.942 -9.970 123.299 60.6 2.6 1␣

→˓0
10 28696 2018 12 30 20:22:25.646099 73345.6461 0.928 -8.069 123.234 206.4 3.2 1␣

→˓0
11 28697 2018 12 31 04:36:34.280000 16594.2800 0.769 -8.808 124.321 96.4 2.5 1␣

→˓1
12 28699 2018 12 31 19:13:00.751600 69180.7516 0.983 -8.879 123.539 5.2 2.9 1␣

→˓0

The cat command will pop the whole content at once.

We could count the total lines and characters of the catalog by using the wc command.

1 $ wc -l banda_arc_catalog.txt
2 19075 banda_arc_catalog.txt
3 $ wc -c banda_arc_catalog.txt
4 1735843 banda_arc_catalog.txt

The parameters -l and -c are parameters that choose the output. -l means count the lines of the file and -c means

8 Chapter 2. Unix commands
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count the total characters of the file. The catalog is a very large catalog with 19074 events (first line of the file indicates
the contents).

Tip: The $? could be used to represent specific column, such as $1 represents the 1st culumn, $2 represents the 2nd
column, $NF represents the last column.

After viewing the original catalog, some processes can be done to divide the catalog for the analysis. The target is to
generate sub-divided catalogs based on different properties like time and magnitude. To achieve this, some operational
commands need to be used. grep and awk is two simple commands for searching certain content from the file.

3.2.1 Extract the text content

The grep is a command used to search for texts and strings. It output all the rows that contain the searched character.

For example, when we would like to search earthquakes that occurred in 2014, we can use the following commands.

1 $ grep ‘2014’ banda_arc_catalog.txt
2 ...
3 2707 2014 12 31 13:46:44.510000 49604.5100 1.210 -8.959 123.953 91.9 3.2 1 1
4 2709 2014 12 31 15:50:22.129999 57022.1300 0.599 -8.116 120.694 3.2 2.1 1 1
5 2710 2014 12 31 15:53:45.350000 57225.3500 1.305 -9.457 119.644 64.3 2.2 1 1
6 2711 2014 12 31 16:22:48.430000 58968.4300 1.488 -9.476 120.123 75.6 1.9 1 1
7 2712 2014 12 31 18:16:21.280000 65781.2800 1.329 -10.439 123.626 110.1 2.4 1 1
8 2714 2014 12 31 19:07:44.320000 68864.3200 1.350 -9.601 119.909 55.2 1.8 1 1
9 2715 2014 12 31 19:14:17.627898 69257.6279 1.265 -9.331 124.087 4.9 2.5 1 0

10 2716 2014 12 31 19:19:49.720000 69589.7200 1.649 -9.662 119.824 24.4 1.9 1 1
11 2717 2014 12 31 19:47:27.840000 71247.8400 1.068 -9.146 118.864 51.9 2.6 1 1
12 2718 2014 12 31 20:24:31.120000 73471.1200 1.724 -9.072 123.987 73.2 1.9 1 1
13 2720 2014 12 31 20:33:22.680000 74002.6800 1.350 -8.293 120.601 39.5 2.1 1 1
14 2721 2014 12 31 20:40:36.260000 74436.2600 0.917 -10.070 119.152 13.2 2.2 1 1
15 2722 2014 12 31 22:46:19.320000 81979.3200 1.516 -9.511 120.082 70.5 1.9 1 1
16 6638 2015 05 07 06:06:54.990000 22014.9900 0.837 -9.458 125.033 7.5 2.7 1 1
17 6771 2015 05 12 06:06:54.222800 22014.2228 0.684 -8.800 120.459 109.0 2.1 1 0
18 12014 2015 11 04 19:28:46.320000 70126.3200 1.223 -8.298 125.076 5.2 2.4 1 1
19 20141 2016 06 18 18:32:52.840000 66772.8400 0.836 -8.311 123.929 176.8 1.9 1 1
20 20142 2016 06 18 19:14:26.900000 69266.9000 1.531 -9.441 124.789 4.1 1.8 1 1
21 20143 2016 06 18 20:03:26.445700 72206.4457 2.369 -8.408 126.589 -3.2 2.6 1 0
22 20144 2016 06 18 20:31:17.911600 73877.9116 1.388 -8.957 119.781 21.3 2.0 1 0
23 20147 2016 06 19 01:38:58.808900 5938.8089 1.081 -11.094 118.986 110.4 3.2 1 0
24 20148 2016 06 19 05:31:08.009999 19868.0100 1.257 -9.681 119.794 56.3 2.3 1 1
25 22014 2016 09 11 08:59:33.940000 32373.9400 1.514 -8.672 118.465 119.5 2.6 1 1
26 27150 2018 07 25 10:21:49.201498 37309.2015 0.947 -8.532 126.669 69.8 3.4 1 0

The command gives an output in the terminal with all rows including ‘2014’. But here are some problem, some row
contains ‘2014’, but the ‘2014’ does not represent the year 2014 (e.g., line 16 to line 26).

The awk is a more powerful tool for manipulating data and producing reports. The awk command allows the user to
use variables, numeric functions, string functions, and logical operators.

Tip: General command: awk [‘pattern {action}’] [file_name]

[pattern] : indicate where to execute the action, for example, NR>10 means lines > 10

2.3. 3 Commands usage and examples 9
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[action] : the default action is to print out all lines fulfilled the pattern, but the action can also be more specific with
different input like calculation.

[file_name] : the file to process

The -F parameter could be used to specify the delimiter. such as awk -F "[|]" [‘pattern action’]
[file_name] specify the | as the delimiter. By default, the delimiter is Space.

1 $ awk 'NR<20{if ($11>3.0) print;}' banda_arc_catalog.txt
2 indx year mon day time sec_relative_to_day res lat lon dep mag visual_

→˓flag hypodd_flag
3 2 2014 03 18 16:56:34.260000 60994.2600 0.697 -9.092 124.191 82.1 3.1 1 1
4 4 2014 03 20 15:32:39.914100 55959.9141 0.706 -7.482 127.900 192.6 3.7 1 0
5 8 2014 03 22 13:57:21.227599 50241.2276 0.792 -9.891 123.950 62.9 3.9 1 0
6 11 2014 03 23 04:37:50.889999 16670.8900 0.787 -9.359 124.140 57.7 3.3 1 1
7 12 2014 03 23 12:16:37.705200 44197.7052 1.017 -10.549 123.603 -4.1 3.3 1 0
8 14 2014 03 24 17:16:01.760000 62161.7600 1.904 -9.108 124.246 68.7 3.1 1 1
9 24 2014 03 31 10:56:15.241300 39375.2413 0.973 -7.424 126.049 23.6 4.1 1 0

In this example, the pattern is NR>20 and the action is if($11>3.0) print. In a readable way, it means for the first
20 lines, print all rows where their column 11($11) is larger than 3.0. With the physical meaning of each column, the
output is all events with a magnitude over 3 within the first 19 events

We could print the column that we are interested in separately by adding the column index after print.

1 $ awk 'NR<20{if ($11>3.0) print $1,$2,$3,$4,$5,$8,$9,$10;}' banda_arc_catalog.txt
2 indx year mon day time lat lon dep
3 2 2014 03 18 16:56:34.260000 -9.092 124.191 82.1
4 4 2014 03 20 15:32:39.914100 -7.482 127.900 192.6
5 8 2014 03 22 13:57:21.227599 -9.891 123.950 62.9
6 11 2014 03 23 04:37:50.889999 -9.359 124.140 57.7
7 12 2014 03 23 12:16:37.705200 -10.549 123.603 -4.1
8 14 2014 03 24 17:16:01.760000 -9.108 124.246 68.7
9 24 2014 03 31 10:56:15.241300 -7.424 126.049 23.6

2.3.3 3.3 File output and input

> and < is the Output and Input Redirection in Unix. Most Unix system commands take input from your terminal and
send the resulting output back to your terminal, as what shown in above examples.

If the notation > file is appended to any command, the output of that command will be written to the file instead of
your terminal.

1 $ echo "hello word"
2 hello word
3 $echo "hello world" > test.txt
4 cat test.txt
5 hello word

In the second command, > was appended to the echo command, so the output was written to the file ‘test.txt’ rather
than the terminal.

Note: echo: output the original content to the screen if it has no special meaning; if the output content has a special
meaning, the output will print its meaning.

10 Chapter 2. Unix commands
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> will generate a new file if the file does not exist and will write over the file if the file already exists!

Note: Types of Redirection

1. Overwrite

> standard output, < standard input

2. Appends

>> standard output, << standard input

We could now use awk to extract the earthquake based on various criterion and save the output as sub-catalog by using
>.

1 $ mkdir earthquake-2014
2 $ awk '{if ($2==2014) print;}' banda_arc_catalog.txt > earthquake-2014/banda_arc_catalog-

→˓2014.txt
3 $ cd earthquake-2014
4 $ ls
5 banda_arc_catalog-2014.txt
6 $ wc -l banda_arc_catalog-2014.txt
7 1871 banda_arc_catalog-2014.txt

Here we make a directory earthquake-2014 and extract the earthquakes that occurred in 2014 (e.g. $2==2014) and
save the sub-catalog into file ‘banda_arc_catalog-2014.txt’ under the directory. We than count the events number by
using wc -l

< will direct the file as a standard input to the command, for example

1 $ echo line1 > test.txt
2 $ echo line2 >> test.txt
3 $ while read line
4 $ do
5 $ echo $line
6 $ done < test.txt
7 line1
8 line2

Here we use < to direct the file test.txt as a standard input for the command while read line. the command will
read the file line by line as $line.

2.3.4 3.4 The Pipe in Unix

Pipe is used to redirect the output of a command as the input another command

1 $ grep 2014 banda_arc_catalog.txt | wc -l
2 1882
3 $ awk '{if ($2==2014) print;}' banda_arc_catalog.txt | wc -l
4 1871

In this example, we used the pipe | to redirect the output of a command grep and awk as the input of command wc
-l.

2.3. 3 Commands usage and examples 11
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2.4 4 Exercise

4.1. Make a directory earthquake-Mag under A_Detailed_EQ_Catalog. Extract the year, mon, day, time, lat, lon,
dep, and mag of earthquakes with Magnitude between 4 to 6 and save the output to file earthquake-Mag-4-6.txt.
Count the number of the extracted earthquakes.

4.2. Make a station list file with only station ‘ALRB’ and save it as Substation.lst . Only Network, station, latitude,
longitude, elevation are needed. Append same information of station ‘PPLA’ to the Subastaion.lst.

2.5 References

Jiang C, Zhang P, White M C A, et al. A Detailed Earthquake Catalog for Banda Arc–Australian Plate Collision Zone
Using Machine-Learning Phase Picker and an Automated Workflow[J]. The Seismic Record, 2022, 2(1): 1-10.
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CHAPTER

THREE

GENERIC MAPPING TOOLS - TOPOGRAPHIC MAP

3.1 Brief introduction

3.1.1 What is GMT?

1. The Generic Mapping Tools (GMT) is one of the most popular mapping softwares in the world;

2. It is widely used across the Earth, Ocean, and Planetary sciences and beyond;

3. It is a free, open source software licensed under the GNU LGPL license.

3.1.2 What can GMT do?

1. Process data of different format. For example, time series (seismograph), xy data (fault trace), xyz
data(geographic data), and so on.
2. Generate publication-quality illustrations. Here is an example:
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3. Automate workflows. If script is provided and GMT is installed, one figure can be plotted by one command.
4. Make animations. For example, this is an animation showing Pacific Earthquakes in 2018 made by GMT.

3.1.3 How to install GMT?

Note:
There are lots of ways to install GMT on your computer.
Here we strongly suggest beginners to install it by conda.

The following steps have been tested successfully for Linux, macOS, and window subsystem for linux.

1. Install miniconda
2. Open a terminal and run these commands sequentially

Warning: Exclude $ and start without whitespace!

$ conda create --name gmt-env
$ conda activate gmt-env
$ conda install gmt -c conda-forge

3. Check if it has been successfully installed
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$ gmt --version
6.3.0

3.1.4 Start with three simple examples

1. Run this single command and look what will happen

$ gmt coast -Rg -JH15c -Gpurple -Baf -B+t"My First Plot" -pdf,png GlobalMap1

2. Run the following commands step-by-step and compare the difference

$ gmt begin GlobalMap2 png,pdf
$ gmt coast -Rg -JH15c -Gpurple -Baf -B+t"My Second Plot"
$ gmt end show

3. Run the same commands using Shell script and compare the difference

$ cat GlobalMap3.sh
#!/bin/sh
gmt begin GlobalMap3 png,pdf
gmt coast -Rg -JH15c -Gpurple -Baf -B+t"My Third Plot"
gmt end show
$ sh GlobalMap3.sh

No difference found! And do you think which way is better, especially for very complex figures? There is no doubt
that the third way, (i..e., based on script), is better. Since we can simply modify the script and re-run the script to

refine the figure.

3.1.5 Basic structure of GMT script

Now let’s take a further look at the third example in the previous part

1. #!/bin/sh specifies sh as the command language interpreter.

Tip:
$ which sh
If the output is /dir/to/sh, then replace #!/bin/sh by #!/dir/to/sh

3.1. Brief introduction 15
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2. gmt begin GlobalMap3 png,pdf initiates a new GMT session. The output figure name is GlobalMap3. The
output figure format are png and pdf.

Note:
The sequence is important
That is: gmt begin <figure name> <format1,format2,. . . ,formatN>

3. gmt coast -Rg -JH15c -Gpurple -Baf -B+t"My Third Plot" adds the first layer. If it’s followed by other
commands, as shown in later parts, this layer will be overlaid by new layers.

Note:
The general structure of these “adding-layer” commands is:
gmt <command> -<option1> -<option2> ... -<optionN>

4. gmt end show terminates the GMT session. If show exists, the produced figure of the first format will be opened
by default viewer.

There are a lot of GMT commands and much much much more options. Here, this tutorial aims to give GMT
beginners very quick training. Therefore, we will show readers how to generate figures from public seismic data using
some commonly used commands. More specificlly, It includes: 1. Plotting topographic map 2. Plotting earthquake

catalog 3. Plotting cross sections.

3.2 Plotting topographic map

3.2.1 Preview

After learning this part, you will be able to create the figure below or similar ones.
The figure below is modified from Figure 1 in this paper.
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It is generated using the following commands:

#!/bin/sh

gmt begin Banda_Arc_Region png

# constructing the frame
gmt basemap -JM10c -R114/131/-14/-5 -BWeSn -Bxa5f1 -Bya2f1
# creating a colormap with customized boundaries
gmt makecpt -Crelief -T-6000/6000/200 -D -Z -H > elevation.cpt
# plotting the topography data, which can be remotely obtained from gmt database using␣
→˓the @earth_relief_??? option
gmt grdimage @earth_relief_01m -Celevation.cpt -I+
# plotting the coastline data
gmt coast -W0.5p,black -Da
# inset a global figure with the specify boundary
gmt inset begin -Dn1/0+jBR+w2.5c
gmt coast -Rg -JG123/-10/90/? -B -Swhite -A5000 -Ggray -W0.2p,black -Da --MAP_FRAME_
→˓PEN=0.2p
echo -e "\n114 -14\n131 -14\n131 -5\n114 -5\n114 -14" | gmt plot -W0.5p,red
gmt inset end
# plotting the trench data using given data file
gmt plot java_trench.txt -W1p,white
# inserting text
echo '116 -12 Java trench' | gmt text -F+f8p,white
# extracting stations locations from data files
awk 'NR>1 {print $5,$6}' GE_3_stations.txt | gmt plot -Si6p -W0.1p,black -Gcyan
awk -F"|" 'NR>3 {print $6,$5}' YS_30_stations.txt | gmt plot -Si6p -W0.1p,black -Gwhite
# creating colorbar legend
gmt colorbar -Dn1/0+o0.5c/0c+jBL+w5.5c -Bxa3000 -By+l"Topo (m)" -Celevation.cpt

gmt end show

rm elevation.cpt

To reproduce it by yourself, you may first download or save java_trench.txt, GE_3_stations.txt,
YS_30_stations.txt, and then move these files into your working directory. Try to copy the above commands
and run them on your own computer to see if you can generate the same figure without warning or error.

3.2. Plotting topographic map 17
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3.2.2 Step-by-Step explanation

1. gmt basemap -JM10c -R114/131/-14/-5 -BWeSn -Bxa5f1 -Bya2f1 to plot base maps and frames

-JM10c specifies the map projection type to be Mercator projection. The width of map is 10c (10 centimeters).

-R114/131/-14/-5 specifies the map range, minimum and maximum longitudes are 114 and 131, minimum and
maximum latitudes are -14 -5.

-BWeSn specifies that the left and bottom ticklabels are visible, which the right and top ticklabels are invisible.

-Bxa5f1 specifies that x axes have ticklabels with interval of 5 and ticks with interval of 1.

-Bya2f1 specifies that y axes have ticklabels with interval of 2 and ticks with interval of 1.

2. gmt makecpt -Crelief -T-6000/6000/200 -D -Z -H > elevation.cpt to make color palette tables

-Crelief specifies the input cpt to be relief, click to see a full list of built-in cpt

-T-6000/6000/200 defines the range of the new CPT by giving the lowest and highest z-values as -6000 and 6000,
the increment is 200.

-D selects the back- and foreground colors to match the colors for lowest and highest z-values in the output CPT.

-Z forces a continuous CPT when building from a list of colors and a list of z-values [discrete].

-H is required for modern mode.

> elevation.cpt save the output CPT into a file named elevation.cpt

3. gmt grdimage @earth_relief_01m -Celevation.cpt -I+ to read a 2-D grid file and produce a colored map

@earth_relief_01m will download global relief grids (the resolution is 1 minute, it depends on the map range) from
the GMT server. Click to view a full list of provided Global Relief Datasets

-Celevation.cpt specifies which CPT to use.
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-I+ selects the default arguments to apply intensity.

4. gmt coast -W0.5p,black -Da to add shorelines

-W0.5p,black specifies the line width to be 0.5p (0.5 point) and line color to be black.

-Da means that selecting the resolution of shorelines automaticly.

5. gmt inset begin -Dn1/0+jBR+w2.5c to initiate an inset plotting

-Dn1/0+jBR+w2.5c gives the location and size of the inset. Now the anchor point is relative to both main and inset
map. In the main map, both x and y axes are normalzied with range to be 0-1. So here n1/0 means the right most and
lower most point, i.e., the bottom right point of the main map. In the inset map, the location of this anchor point is also
at bottom right (BR). And the width of the inset map is 2.5c.

3.2. Plotting topographic map 19
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6. gmt coast -Rg -JG123/-10/90/? -B -Swhite -A5000 -Ggray -W0.2p,black -Da –MAP_FRAME_PEN=0.2p to
plot continents and shorelines

-Rg specifies the global domain.

-JG123/-10/90/? specifies the projection type to be orthographic azimuthal projection and the center longitude and
latitude to be 123 and -10. The horizon is 90 degree (<=90). The width is same as the inset map, thus use ?.

-B means no ticks and gridlines.

-Swhite specifies the color of wet areas to be white.

-A5000 means that an area smaller than 5000 km^2 will not be plotted.

-Ggray specifies the color of dry areas to be gray.

--MAP_FRAME_PEN=0.2p sets the map’s frame width to be 0.2p.

7. gmt inset end to terminate the inset plotting

8. gmt plot java_trench.txt -W1p,white to plot trench locations

java_trench.txt contains two columns of data, the first column is longitude and the second column is latitude. Each
row means a sample point along the trench line.

-W1p,white specifies the line width and color to be 1p and white.

9. echo ‘116 -12 Java trench’ | gmt text -F+f8p,white to add text

116 -12 specifies the location.

Java trench is the text being added.
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-F+f8p,white specfies the fontsize and color of text.

10. awk ‘NR>1 {print $5,$6}’ GE_3_stations.txt | gmt plot -Si6p -W0.1p,black -Gcyan to plot seismic stations

Si6p specifies the symbols to be inverted triangles (i) and their size is 6p.

-Gcyan specifies fill color of the symbols.

-W0.1p,black specifies the outline properties of symbols.

11. awk -F”|” ‘NR>3 {print $6,$5}’ YS_30_stations.txt | gmt plot -Si6p -W0.1p,black -Gwhite to plot more
seismic stations

12. gmt colorbar -Dn1/0+o0.5c/0c+jBL+w5.5c -Bxa3000 -By+l”Topo (m)” -Celevation.cpt to add a color bar

3.2. Plotting topographic map 21
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+o0.5c/0c means the anchor point in the main figure is further moved for 0.5c along the x direction.

-By+l"Topo (m)" adds a label along the y axis.
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FOUR

GENERIC MAPPING TOOLS - SEISMIC DATA

4.1 Plotting earthquake catalog

4.1.1 Preview

The figure below is modified from Figure 2 in this paper.

It is generated using the following commands:

#!/bin/sh
gmt begin catalog png
# the frame
gmt basemap -JM15c -R115/131/-13/-5 -Bxa5f1 -Bya5f1 -BWeSn+t"Final catalog" --MAP_FRAME_
→˓TYPE=plain --FONT_TITLE=10p --MAP_TITLE_OFFSET=-8p
# plotting coastline with specify land and sea colours
gmt coast -Gwhite -Slightblue -W0.1p,black -Da
# creating customized colormaps
gmt makecpt -Chot -T0/400/10 -D -Z -Ic -H > depth.cpt
awk '{print $9,$8,$10}' banda_arc_catalog.txt > catalog.xyz

# plotting the earthquake data
gmt plot catalog.xyz -Sc0.1c -Cdepth.cpt
# plotting the trench

(continues on next page)
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(continued from previous page)

gmt plot java_trench.txt -W1p,black
# extracting station data and plot them
awk 'NR>1 {print $5,$6}' GE_3_stations.txt |gmt psxy -Si7p -W0.01p,black -Gblue
awk -F"|" 'NR>3 {print $6,$5}' YS_30_stations.txt |gmt psxy -Si7p -W0.01p,black -Gblack
# creating a colorbar
gmt colorbar -DjBL+h+o0.3c/0.6c+jBL+w5c/0.3c+e -By+l"Depth (km)" -Bxa100 -Cdepth.cpt
# plotting text
echo "128 -12.5 N = 19074" | gmt text -F+f8p,black
echo "116 -11.5 Java trench" | gmt text -F+f8p,black
gmt end

To reproduce it by yourself, you may first download or save banda_arc_catalog.txt, java_trench.txt,
GE_3_stations.txt, YS_30_stations.txt, and then move these files into your working directory. Try to copy
the above commands and run them on your own computer to see if you can generate the same figure without warning
or error.

4.1.2 Step-by-Step explanation

1. gmt basemap -JM15c -R115/131/-13/-5 -Bxa5f1 -Bya5f1 -BWeSn+t”Final catalog”
–MAP_FRAME_TYPE=plain –FONT_TITLE=10p –MAP_TITLE_OFFSET=-8p to plot base maps and frames

-JM15c specifies the map projection type to be Mercator projection. The width of map is 15c (15 centimeters).

-R115/131/-13/-5 specifies the map range, minimum and maximum longitudes are 115 and 131, minimum and
maximum latitudes are -13 -5.

-Bxa5f1 specifies that x axes have ticklabels with interval of 5 and ticks with interval of 1.

-Bya5f1 specifies that y axes have ticklabels with interval of 5 and ticks with interval of 1.

-BWeSn+t"Final catalog" specifies that the left and bottom ticklabels are visible, which the right and top ticklabels
are invisible, where the +t"Final catalog" indicates plotting the title “Final catalog”

--MAP_FRAME_TYPE=plain --FONT_TITLE=10p --MAP_TITLE_OFFSET=-8p are the gmt settings.
--MAP_FRAME_TYPE=plain specifies the frame type as plain(i.e., simple line); --FONT_TITLE=10p specifies
the font of title to be 10p; --MAP_TITLE_OFFSET=-8p specifies the distance between the title with the frame to be
-8p.
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2. gmt coast -Gwhite -Slightblue -W0.1p,black -Da to plot coastline and specify land and sea colours

-Gwhite specifies fill the dry/land area with white.

-Slightblue specifies fill the wet/sea/lake area with lightblue.

--W0.1p,black specifies the line with a witdh of 0.1p and line color of black.

-Da specifies automatically selects the appropriate data precision based on the size of the current drawing area

3. gmt makecpt -Chot -T0/400/10 -D -Z -Ic -H > depth.cpt to make color palette tables

-Chot specifies the input cpt used is hot

-D selects the back- and foreground colors for the colorbar

-Z creates a continuous cpt file
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-Ic reverse the CPT

4. awk ‘{print $9,$8,$10}’ banda_arc_catalog.txt > catalog.xyz

5. gmt plot catalog.xyz -Sc0.1c -Cdepth.cpt to plot earthquake data

catalog.xyz contains three columns of data. longitude, latitude, and depth. The value of depth column will be used
for coloring points based on CPT file.

6. gmt plot java_trench.txt -W1p,black to plot the trench line.

7. awk ‘NR>1 {print $5,$6}’ GE_3_stations.txt |gmt psxy -Si7p -W0.01p,black -Gblue to extract station data and
plot them

8. awk -F”|” ‘NR>3 {print $6,$5}’ YS_30_stations.txt |gmt psxy -Si7p -W0.01p,black -Gblack to extract station
data and plot them

26 Chapter 4. Generic Mapping Tools - Seismic Data



CUSeisTut, Release 0.0.1

9. gmt colorbar -DjBL+h+o0.3c/0.6c+jBL+w5c/0.3c+e -By+l”Depth (km)” -Bxa100 -Cdepth.cpt to plot a
colorbar

-DjBL+h+o0.3c/0.6c+jBL+w5c/0.3c+e specifices the paramter of colorbar. -DjBL means plot color at the Bottom
Left; +h means draw horizontal color scale; +o0.3c/0.6c means plot move the colorbar 0.3 cm in X direction and
0.6 cm in Y Direction; +w5c/0.3c means plot a colorbar with a length of 5 cm and a width of 0.3 cm; +e means add
a triangle to the foreground and background colors in the colorbar.

10. echo “128 -12.5 N = 19074” | gmt text -F+f8p,black to plot text

11. echo “116 -11.5 Java trench” | gmt text -F+f8p,black to plot text

-F+f8p,black specifices the font size of 8p and color of black
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4.2 Plotting cross sections

4.2.1 Preview

The figure below is modified from Figure 3 in this paper.

It is generated using the following commands:
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#!/bin/sh
# extract data ignoring header, in order : lon, lat, depth, residual
awk 'NR>1 {print $9,$8,$10,$7}' banda_arc_catalog.txt > extracted.txt

gmt begin section png
gmt makecpt -Cseis -T0/3/0.1 -D -Z -H > res.cpt

gmt subplot begin 3x2 -Fs14c/7c -A
gmt subplot set 0 # transect along lon = 118
# project the data within 0.5 degree onto plane
# output file in order: latitude , depth , residual
gmt project extracted.txt -C118/-12 -E118/-6 -Lw -W-0.5/0.5 -Fyz > projected_input.txt
gmt plot projected_input.txt -JX14c/-7c -R-12/-6/0/650 -BWesn -Bya200f40+l"Depth (km)" -
→˓Bxa2f0.5 -Sc4p -W0.5p -Cres.cpt # ploting
echo "lon = 118" | gmt text -F+cBL+f12p,4,black -Dj1c/1c # adding text

gmt subplot set 1 # transect along lon = 120
# project the data within 0.5 degree onto plane
# output file in order: latitude , depth , residual
gmt project extracted.txt -C120/-12 -E120/-6 -Lw -W-0.5/0.5 -Fyz > projected_input.txt
gmt plot projected_input.txt -JX14c/-7c -R-12/-6/0/650 -BwEsn -Bya200f40 -Bxa2f0.5 -Sc4p␣
→˓-W0.5p -Cres.cpt # ploting
echo "lon = 120" | gmt text -F+cBL+f12p,4,black -Dj1c/1c # adding text

gmt subplot set 2 # transect along lon = 122.5
# project the data within 0.5 degree onto plane
# output file in order: latitude , depth , residual
gmt project extracted.txt -C122.5/-12 -E122.5/-6 -Lw -W-0.5/0.5 -Fyz > projected_input.
→˓txt
gmt plot projected_input.txt -JX14c/-7c -R-12/-6/0/650 -BWesn -Bya200f40+l"Depth (km)" -
→˓Bxa2f0.5 -Sc4p -W0.5p -Cres.cpt # ploting
echo "lon = 122.5" | gmt text -F+cBL+f12p,4,black -Dj1c/1c # adding text

gmt subplot set 3 # transect along lon = 124.0
# project the data within 0.5 degree onto plane
# output file in order: latitude , depth , residual
gmt project extracted.txt -C124.0/-12 -E124.0/-6 -Lw -W-0.5/0.5 -Fyz > projected_input.
→˓txt
gmt plot projected_input.txt -JX14c/-7c -R-12/-6/0/650 -BwEsn -Bya200f40 -Bxa2f0.5 -Sc4p␣
→˓-W0.5p -Cres.cpt # ploting
echo "lon = 124.0" | gmt text -F+cBL+f12p,4,black -Dj1c/1c # adding text

gmt subplot set 4 # transect along lon = 125.5
# project the data within 0.5 degree onto plane
# output file in order: latitude , depth , residual
gmt project extracted.txt -C125.5/-12 -E125.5/-6 -Lw -W-0.5/0.5 -Fyz > projected_input.
→˓txt
gmt plot projected_input.txt -JX14c/-7c -R-12/-6/0/650 -BWeSn -Bya200f40+l"Depth (km)" -
→˓Bxa2f0.5 -Sc4p -W0.5p -Cres.cpt # ploting
echo "lon = 125.5" | gmt text -F+cBL+f12p,4,black -Dj1c/1c # adding text

gmt subplot set 5 # transect along lon = 128.0
# project the data within 0.5 degree onto plane

(continues on next page)
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# output file in order: latitude , depth , residual
gmt project extracted.txt -C128.0/-12 -E128.0/-6 -Lw -W-0.5/0.5 -Fyz > projected_input.
→˓txt
gmt plot projected_input.txt -JX14c/-7c -R-12/-6/0/650 -BwESn -Bya200f40 -Bxa2f0.5 -Sc4p␣
→˓-W0.5p -Cres.cpt # ploting
echo "lon = 128.0" | gmt text -F+cBL+f12p,4,black -Dj1c/1c # adding text

gmt subplot end

gmt colorbar -DJBC+e+w8c+o1c -Cres.cpt -Bxa1+L"RMS residuals (s)"
gmt end

To reproduce it by yourself, you may first download or save banda_arc_catalog.txt and then move this files into
your working directory. Try to copy the above commands and run them on your own computer to see if you can generate
the same figure without warning or error.

You may go to the official tutorial website of GMT v6.3 for more exploring

4.3 Excercises

4.3.1 Reproduce figure 1 in the paper

1. include the base map and other samples (including the station, plate boundary, subduct direction arrows, and so
on)

2. plot the station name, filled the station samples by yellow, and the station list in Unix command by red.

3. add a scale to the figure.

4. plot the map view cross-section, mark two ends of it with “A” and “A’”. The cross-section should cross through
the “MMRI” station, and with a length of 300 km, strike 30 degrees west of north

4.3.2 Plot a cross-section plot based on the catalog generated in the Unix command
tutorial

1. project the earthquake within 30 km to the cross-section.

2. Scale the circles by earthquake magnitude and filled the circle according to their depth.

3. marked “A” and “A’” in the figure.

4.3.3 Plot the magnitude variation figure. Refer to Figure 4b in the paper

1. used stars to represent 10 maximum magnitude earthquakes. and label the magnitude of the largest one.

2. filled the circle according to their depth.
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CHAPTER

FIVE

SEISMIC DATA REQUEST VIA OBSPY

5.1 Brief introduction

5.1.1 What is ObsPy?

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It
provides parsers for common file formats, clients to access data centers and seismological signal processing routines
which allow the manipulation of seismological time series (copied from ObsPy Github page).

We assume that you already have some experience of using Python. If not, you are suggested to read this small,
incomplete introduction to the Python programming language.

5.1.2 How to install ObsPy

Note:
It’s strongly recommended to install ObsPy via conda.
We here assume you have already installed conda on your computer after finishing the previous GMT tutorial.
If not, please first install it (suggest installation of miniconda).

Open your terminal and run the following commands.

$ conda create --name obspy
$ conda activate obspy
$ conda install obspy=1.2

Warning: Exclude $ sign and start without whitespace!
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5.1.3 Contents of this tutorial

We will introduce how to request, read, visualize, and further process seismic data using a few basic functions in the
ObsPy module. it includes:

1. UTC DateTime

2. Basic Seismic Data Processing

3. Theoreotical Travel Time Calculation

4. Cross-section Plot with TauP arrivals

Developed by LAU Tsz Lam Zoe under the instructions of Junhao SONG, Han CHEN, and Suli Yao.

5.2 1 UTC Date Time

Now let’s introduce the UTC DateTime format.

The UTC DateTime is a Coordinated Universal Time. Usually we could see that HKT (UTC+8) or BJT (UTC+8),
which means that Hong Kong or Beijing time is 8 hours earlier than UTC time. We usually use UTC Datetime to
present the origin time of an earthquake. Seismic time-series data like digital seismograms also use UTC Datetime to
present the time of each sample.

5.2.1 1.1 DateTime Initialization

First in the terminal, type python and then type enter:

## Method1
>>>from obspy import UTCDateTime ## import the module
>>>year = 2022
>>>month = 1
>>>day = 7
>>>hour = 17
>>>minute = 45
>>>second = 30.0
>>>UTCDateTime(year, month, day, hour, minute, second) ## make the UTCDateTime object␣
→˓according to the argument
UTCDateTime(2022, 1, 7, 17, 45, 30)

##Method 2
>>>UTCDateTime("2012-09-07T12:15:00")
UTCDateTime(2012, 9, 7, 12, 15)

Note:
There are many ways to produce the UTCDateTime object.
Method 1 & 2 are examples. You can explore others here.
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5.2.2 1.2 DateTime Attribute Access

Now we can assign the UTCDateTime object to a variable “time”.

>>>time = UTCDateTime("2012-09-07T12:15:00")
>>>print(time)
2012-09-07T12:15:00.000000Z
>>>print(type(time))
<class 'obspy.core.utcdatetime.UTCDateTime'>

Then, since it’s a python class object, we can extract different time information by using UTCDateTime built-in func-
tions/atttributes.

>>>print(time.year) ## only output the year of "time"
2012
>>>print(time.julday) ## output the Julian day of "time"
251
>>>print(time.timestamp) ## output the UNIX timestamp format of "time".
1347020100.0
>>>print(UTCDateTime("1970-01-01").timestamp)
0.0

Note:
Julian Day is a continuous count of days since the beginning of the year.
Simple example: What is the July of 1st Feb, 2022?
Ans: 32

The UNIX timestamp format means the number of seconds since the Epoch. The reference time is: “1970-01-01”

5.2.3 1.3 Handling time differences

Calculate the time difference or add seconds into original “time”

>>>print(time - UTCDateTime("2012-09-07"))
44100.0
>>>time2 = time + 3600
>>>print(time2)
2012-09-07T13:15:00.000000Z

Clearly, we can see that “time2” is 1 hour (3600 seconds) later than “time”.
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5.3 2 Seismic data acquisition and visualization

5.3.1 Flow chart

5.3.2 2.1 Choose an event

You can select one event in the event list.

Note:
Here is the header information of the event list
indx year mon day time sec_relative_to_day res lat lon dep mag
9393 2015 08 11 16:22:15.200000 58935.2000 1.403 -8.624 123.202 171.9 3.9

Input the origin time, coordinates and magnitude of the selected event.

from obspy import UTCDateTime
origin_time = UTCDateTime("2015-08-11T16:22:15.200000")

# Coordinates and the magnitude of the event
eq_lon = 123.202
eq_lat = -8.624
eq_dep = 171.9
eq_mag = 3.9
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5.3.3 2.2 Choose a station

Choose one station from the station list. Make sure the selected station is operating during the event.

Note:
Here is the header information of the station list.
Network | Station | Location | Channel | Latitude | Longitude | Elevation | Depth | Azimuth | Dip | SensorDescription |
Scale | ScaleFreq | ScaleUnits | SampleRate | StartTime | EndTime

YS|BAOP||BHZ|-8.4882|123.2696|67.0|0.0|0.0|-90.0|Nanometrics Trillium 120 Sec Response/Taurus
Stand|1.19642E9|0.3|m/s|50.0|2014-10-31T00:00:00|2016-12-31T23:59:59

5.3.4 2.3 Get waveforms

Import the web service providers and input station information.

from obspy.clients.fdsn import Client

# IRIS is one of those providers.
client = Client('IRIS') ##to initialize a client object(as IRIS here)

# Input station informations
# network
net = 'YS'
# station
sta = 'BAOP'
# location
loc = ''
# channel
cha = 'BHZ'

# starttime
stt = origin_time
# endtime
edt = origin_time + 120

# Get the waveforms from client
st = client.get_waveforms(net, sta, loc, cha, stt, edt) ## to get the waveform by the␣
→˓corresponding argument from clients.
print(st)

Note:
FDSN web services for data access to different web service providers.
IRIS is one of the web service providers which is commonly used.
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5.3.5 2.4 Meta data

We can print the meta data inside the stream.

print(st[0].stats)

network: YS
station: BAOP

location:
channel: BHZ

starttime: 2015-08-11T16:22:15.200000Z
endtime: 2015-08-11T16:24:15.200000Z

sampling_rate: 50.0
delta: 0.02
npts: 6001

calib: 1.0
_fdsnws_dataselect_url: http://service.iris.edu/fdsnws/dataselect/1/query

_format: MSEED
mseed: AttribDict({'dataquality': 'M', 'number_of_records': 26,

→˓'encoding': 'STEIM1', 'byteorder': '>', 'record_length': 512, 'filesize': 13312})

#You can print the corresponding attributes by calling them individually.
print(st[0].stats.sampling_rate)

50.0

.stats contains all header information of a Trace object.

Tip: There are some default attributes.

sampling
rate

Sampling rate in hertz network Network code

station Station code channel Channel code
starttime UTCDateTime of the first data

sample
endtime UTCDateTime of the last data

sample
gcarc Epicentral distance baz Back azimuths

For gcarc and bac , they are available in sac file. You can print them by:

print(st[0].stats.sac.gcarc)

# If the header value is empty, you can assign value into the header.
st[0].stats.sac.gcarc = 10000
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5.3.6 2.5 Plot the waveforms

Here we plot the waveforms without any preprocessing procedure.

st.plot();

st.spectrogram();

Note: Spectrogram is a frequency content of a seismogram. You can check the energy level of the waves over time.

5.3.7 2.6 Waveform Cross-section Plot

Plot a record section.

5.3.8 2.6.1 Get the waveform data with more than 1 station

For our example, station ‘BAOP’, ‘HADA’, ‘SINA’ ‘BKOR’ and ‘ALRB’ are located near the epicentre of the earth-
quake. It is expected that these 5 stations can record the event well.
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# Set up a list for bulk request
bulk = [('YS', 'BAOP', '', 'BHZ', origin_time, origin_time+120),

('YS', 'HADA', '', 'BHZ', origin_time, origin_time+120),
('YS', 'SINA', '', 'BHZ', origin_time, origin_time+120),
('YS', 'BKOR', '', 'BHZ', origin_time, origin_time+120),
('YS', 'ALRB', '', 'BHZ', origin_time, origin_time+120)]

st_bulk = client.get_waveforms_bulk(bulk)
print(st)

get_waveforms_bulk send a bulk request for waveforms to the server

5.3.9 2.6.2 Calculate the great circle distance from stations to earthquake

# Input the coordinates of stations
ALRB_loc = [-8.2194, 124.4115]
BAOP_loc = [-8.4882, 123.2696]
BKOR_loc = [-8.4868, 122.5509]
HADA_loc = [-8.3722, 123.5454]
SINA_loc = [-8.1838, 122.9124]

from obspy.geodetics import gps2dist_azimuth

# Loop, get the station coordinates and calculate the distance
for tr in st_bulk:

sta = tr.stats.station
if sta == 'ALRB':

sta_lat = ALRB_loc[0]
sta_lon = ALRB_loc[1]

if sta == 'BAOP':
sta_lat = BAOP_loc[0]
sta_lon = BAOP_loc[1]

if sta =='BKOR':
sta_lat = BKOR_loc[0]
sta_lon = BKOR_loc[1]

if sta =='HADA':
(continues on next page)
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sta_lat = HADA_loc[0]
sta_lon = HADA_loc[1]

if sta =='SINA':
sta_lat = SINA_loc[0]
sta_lon = SINA_loc[1]

tr.stats.distance = gps2dist_azimuth(sta_lat, sta_lon,eq_lat, eq_lon)[0]

# To check the result, you can print the distance with stations.
for tr in st_bulk:

print(tr.stats.station, tr.stats.distance)

gps2dist_azimuth calculate the distance between two geographic points and forward and backward azimuths be-
tween these points

Note:
As the mseed file does not contain the location of station, we have to get the information from the station list.
We also have to save the calculated distance into the metadata, as the value is empty initially.

5.3.10 2.6.3 Plot the waveform cross-section plot

stream.plot allows us to plot the streams at the same figure. For example, we can plot all stream with the same X
axis:

st_bulk.plot(size=(1600,800)) ## size=(1600,800) sets the figure size

We can also plot the streams in a cross-section view:

st_bulk.plot(type='section') ## type='section' indicates a record section can be plotted
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Note: We could add more features to the plot, for example, the phase arrivals, and the station names. It is a good way
for us to recognize different seismic phases, We can also get the apparent velocity of P - and S - waves from the plot.
We will introduce these in the next section.
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SIX

SEISMIC DATA PROCESS VIA OBSPY

6.1 1 Basic Seismic Data Processing

6.1.1 1.1 Detrend / Filter Data

detrend() is provided to remove a trend from the trace. There are many methods listed for detrend function (simple,
linear, constant . . . ), please refer to obspy.core.trace.Trace.detrend

To better visualize and demonstrate the effect of detrending, we will provide some examples with significant trends,
and show the effect of detrend function.

1.1.1 Remove Mean
You can download the waveform file here. PA01.bhy We first read the downloaded waveform file.

from obspy import read
rmean_raw = read('PA01.bhy') ## Read waveform files into an ObsPy Stream object.

# Plot the waveform without any processing and copy the stream.
rmean_raw.plot()
rmean_processed = rmean_raw.copy() ## Copy the raw stream to the new one to be processed

Tip:
This operation is performed in place on the actual data arrays. If you want to see the difference before and after the
processing of data. It is better to copy the stream as the processing will overwrite the original waveforms.

Now let’s detrend the waveforms and plot it again.

rmean_processed.detrend("demean")
rmean_processed.plot()

# You can compare the raw and processed waveforms by overlapping them.
import matplotlib.pyplot as plt

plt.figure(figsize=(13,5))
for tr in rmean:

data1 = tr.data
plt.plot(data1,color='red',label='raw')

for tr in rmean_test:
(continues on next page)
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data2 = tr.data
plt.plot(data2,color='blue',label='removed mean')

plt.legend()

Here is the result.

1.1.2 Remove Linear trend
You can download the waveform file here. LLT.E.Vel.BF.SAC The procedures are the same with remove mean, but
use .detrend("linear") to remove linear trend. Follows is the result.

6.1.2 1.2 Filter Data

Filtering data removes the noise so that we can identify the phases easier in the filtered waveforms. You can apply
different filters to extract the signal of interest from the raw data. filter function provides different filters. For
example, bandpass, highpass and lowpass.

To further understand the effects of different filter, you can download the waveform file here PA03.bhz for practice.

from obspy import read

# Read the waveform file
raw_data = read('./PA03.bhz')

# Plot the raw waveform
(continues on next page)
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raw_data.plot()
raw_data.spectrogram()

# Copy the waveform for further processing
processed_low = raw_data.copy()

# Filter the waveform with lowpass filter
processed_low.filter("lowpass",freq=1)

# Plot the waveform and spectrogram to see the difference
processed_low.plot(starttime=start_time,endtime=start_time+80)
processed_low.spectrogram(title='lowpass')

You can try with different filters using the above code. Here is the comparison using different filters
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6.1.3 1.3 Waveform rotation

For better reconigizing particlar seismic waves, such as Love waves and Rayleigh waves, we will rotate a seismogram
from the North - East coordinate to Radial- Transverse coordinate.

Here we provide a example. You can download the waveform file here. BINY.N and BINY.E

## import modules that needed in processing
from obspy import read
from obspy.signal import rotate
import matplotlib.pyplot as plt

# Read the North-East components
rotation_N = read('BINY.N')

# Read the South-West components
rotation_E = read('BINY.E')

(continues on next page)
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# print out the meta data
print(rotation_N[0].stats)

# The data of North -East components
north = rotation_N[0].data

east = rotation_E[0].data

# Get the back azimuth.
Baz = rotation_N[0].stats.sac.baz

# Rotate the data into radial and transverse components.
Radial, Transverse = rotate.rotate_ne_rt(north,east,Baz) ## rotate waveforms from North␣
→˓- East components to radial and transverse component

# Plot the result
plt.plot(Radial)
plt.plot(Transverse)
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6.1.4 1.4 Seismic Phases in seismogram

Many seismic phases can be presented in the seismogram. For beginners, we can focus on P - and S - waves. Here is
the demonstration of picking P - and S - waves in a teleseismic earthquake.

We will introduce the picking method in next section!

6.2 2 TauP

TauP is a toolkit to calculate the seismic travel time calculator. It handles many types of velocity models and calculate
times for virtually any seismic phase with a phase parser.

Note: Seismic velocity model is the velocity profile of P and S waves along depth. IASP91 model is commonly used.

TauP can provide us a reference for identifying different phases. We can also compare it with the real arrivals, the
difference between actual and theoretical arrival may interpret as a site effect.

6.2.1 2.1 Source Configuration

Input the information of the source (earthquake)

eq_lat = -8.624
eq_lon = 123.202
eq_dep = 171.9

6.2.2 2.2 Receiver Configuration

Input the information of the receiver (station)

sta_lat = -8.4882
sta_lon = 123.2696
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6.2.3 2.3 Travel Time Calculation

There are 2 methods to calculate the travel time.

6.2.4 Method 1

from obspy.taup import TauPyModel
# Import the velocity model
model = TauPyModel(model="iasp91")

from obspy.geodetics import locations2degrees

for tr in st:
# calculate the distance in degree between the source and receiver
deg_distance = locations2degrees(sta_lat, sta_lon,eq_lat, eq_lon)
print(deg_distance)

# Get the arrivals using the model configured
arrivals = model.get_travel_times(source_depth_in_km=eq_dep, distance_in_degree=deg_

→˓distance, )

location2degrees calculate the great circle distance between 2 points on a spherical earth

model.get_travel_times get the travel times of the phases

6.2.5 Method 2

p_arrival,s_arrival = model.get_travel_times_geo(source_depth_in_km=eq_dep,
source_latitude_in_deg=eq_lat,
source_longitude_in_deg=eq_lon,
receiver_latitude_in_deg=float(sta_lat),
receiver_longitude_in_deg=float(sta_lon),
phase_list=["p","s"])

model.get_travel_times_geo get the travel times of the phases given geographical data

Then you can get the travel time of P - and S waves.

print(p_arrival, "\n", s_arrival)

#Output P - and S waves arrival time(s)
print(p_arrival.time, s_arrival.time)
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6.2.6 2.4 Visualise the result

Plot the theoretical travel time onto the waveform.

# Import matplotlib module
import matplotlib.pyplot as plt
from matplotlib.dates import date2num

# Make figure
fig = plt.figure()
st.plot(fig=fig)

# Axis of the plot
ax = fig.axes[0]
# Add vertical line across the axes
ax.axvline(date2num((origin_time+p_arrival.time).datetime),lw=2)
ax.axvline(date2num((origin_time+s_arrival.time).datetime),lw=2,color='r')
plt.show()
fig.savefig('taup_single_waveform.png',dpi=500)

6.3 3 Section Plot

6.3.1 3.1 Waveform cross-section plot

We have introduce how to make a waveform cross-section plot in 2.6. For this section, we would like to add the
calculated TauP arrivals onto to waveform cross-section plot.

bulk = [('YS', 'BAOP', '', 'BHZ', origin_time, origin_time+120),
('YS', 'HADA', '', 'BHZ', origin_time, origin_time+120),
('YS', 'SINA', '', 'BHZ', origin_time, origin_time+120),
('YS', 'BKOR', '', 'BHZ', origin_time, origin_time+120),
('YS', 'ALRB', '', 'BHZ', origin_time, origin_time+120)]

(continues on next page)
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(continued from previous page)

st = client.get_waveforms_bulk(bulk)
print(st)

# Input the coordinates of stations
ALRB_loc = [-8.2194, 124.4115]
BAOP_loc = [-8.4882, 123.2696]
BKOR_loc = [-8.4868, 122.5509]
HADA_loc = [-8.3722, 123.5454]
SINA_loc = [-8.1838, 122.9124]

# Loop, get the station coordinates and calculate the distance
for tr in st:

sta = tr.stats.station
if sta == 'ALRB':

sta_lat = ALRB_loc[0]
sta_lon = ALRB_loc[1]

if sta == 'BAOP':
sta_lat = BAOP_loc[0]
sta_lon = BAOP_loc[1]

if sta =='BKOR':
sta_lat = BKOR_loc[0]
sta_lon = BKOR_loc[1]

if sta =='HADA':
sta_lat = HADA_loc[0]
sta_lon = HADA_loc[1]

if sta =='SINA':
sta_lat = SINA_loc[0]
sta_lon = SINA_loc[1]

tr.stats.distance = gps2dist_azimuth(sta_lat, sta_lon,eq_lat, eq_lon)[0]

# To check the result, you can print the distance with stations.
for tr in st:

print(tr.stats.station, tr.stats.distance)

6.3.2 3.2 TauP travel time

from obspy import taup

# velocity model configuration
model = taup.TauPyModel(model="iasp91")

p_time = []
s_time = []
sta = []
for tr in st_bulk:

# Get the station location for the input
station_coordinate = str(tr.stats.station)+"_loc"

p_arrival ,s_arrival = model.get_travel_times_geo(source_depth_in_km=eq_dep,
(continues on next page)
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(continued from previous page)

source_latitude_in_deg=eq_lat,
source_longitude_in_deg=eq_lon,
receiver_latitude_in_

→˓deg=float(eval(station_coordinate)[0]),
receiver_longitude_in_

→˓deg=float(eval(station_coordinate)[1]),
phase_list=["p","s"])

print(p_arrival, s_arrival)
# Append lists by stations, p & s arrivals
sta.append(tr.stats.station)
p_time.append(p_arrival.time)
s_time.append(s_arrival.time)

The goal for us is to get the P - and S wave arrival of each station and save them into lists so that we can handle the
result later.

6.3.3 3.3 Output the TauP result as text file for further processing

As we are handling the data with more than 1 station, it is better for us to save the TauP result in a txt file.

# Make a table using pandas and save it to the text file
import pandas as pd
# List to pandas.dataframe
Station = pd.DataFrame(sta)
P_arrival = pd.DataFrame(p_time)
S_arrival = pd.DataFrame(s_time)

# Combine the column together and make a table
tauP_result = pd.concat([Station, P_arrival, S_arrival], axis=1)

# Output the table as a text file
tauP_result.to_csv('taup_result.txt',sep=' ', index=False, header=False)
print(tauP_result[0])

Note:
Pandas is a python library which is used to analyse data.

pd.DataFrame Data structure

pd.concat concatenate pandas objects along a particular axis with optional set logic along the other axes

pd.to_csv write object to a comma-separated values (csv) file
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6.3.4 3.4 Trim and filter data

# Trim the waveform data - shorter time range
st.trim(origin_time, origin_time + p_time[0]+150)
# Filter the waveform
st.detrend('linear')
st.filter('bandpass', freqmin=2, freqmax=15)

trim() cut all traces with given start time and end time

6.3.5 3.5 Add more components on your plot

Then you can add more components in the plot. For example, station name, calculated P - and S wave arrival time.

# Add more components onto the section plot
import numpy as np

ax = fig.axes[0]
# Add title
ax.set_title('Waveform cross-section plot')

# Add station names next to the waveforms
for tr in st:

ax.text((tr.stats.distance / 1e3)+1, 1, tr.stats.station, rotation=270,va="top", ha=
→˓"center", zorder=10)

# Load the tauP output text file
ps_pick = np.loadtxt('taup_result.txt', dtype=str)
# Mark the P & S arrival onto the waveform plot

for tr in st:
# Find the P & S arrivals by stations
sta = tr.stats.station
print(ps_pick[ps_pick[:,0] == sta,1 ])

# Y-axis
p_pick = float(ps_pick[ps_pick[:,0] == sta,1 ])
s_pick = float(ps_pick[ps_pick[:,0] == sta,2 ])
# Offset (x-axis) in km
offset = tr.stats.distance/1e3
# Make the scatter plot
ax.scatter(offset,p_pick, c ='b', marker = '_',s=150)
ax.scatter(offset,s_pick, c ='r', marker = '_',s=150)

axes.set_title set a title for the axes

axes.text add text to the axes

np.loadtxt load the data from the text file

axes.scatter a scatter plot of y vs. X with varying marker size and/or colour

# plot again

(continues on next page)
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(continued from previous page)

st.plot(type='section', recordstart=0, recordlength=60, time_down=True, linewidth=.5,␣
→˓grid_linewidth=.5, show=False, fig=fig)

# Save the figure
# dpi = how many pixels the figure comprises
fig.savefig('section_plot.png',dpi=500)

The section plot is just a recap of the previous section. Let’s have a try!!

6.4 4 Exercises

Here is the event information of a magnitude 7.7 earthquake occurred in 2018.

Note:
Origin time: 2017/07/17 23:34:13.870 (UTC)
Location (lat/lon/dep): 54.4715| 168.8148| 10.99
Magnitude: mww,7.7,us
Region: KOMANDORSKIYE OSTROVA REGION

1. The above is an earthquake with magnitude 7.3, try to find a station that was operating during the event and
download the waveform data. (10 marks)

2. Visualize the waveforms and the frequency content of the phases (10 marks)

3. Make filter to highlight the phases of the seismic trace. and Plot the waveform again with clear P- and S-waves
arrivals (20 marks)

4. Try to identify the Love and Rayleigh waves and estimate their arrivals. (30 marks)

5. Plot a cross-section with title(5) , station names(5) , P - and S - wave arrival(10). And estimate the apparent
velocity of P and S wave(10). (30 marks)
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7.1 Brief Introduction

7.1.1 Why do we use STA/LTA?

By introducing digital seismic data acquisition, long-term continuous recording and archiving of seismic signals has
become a demanding technical problem. A seismic network or even a single seismic station operating continuously at
high sampling frequency produces an enormous amount of data, which is often difficult to store (and analyze) locally
or even at the recording center of a network. This situation has forced seismologists to invent triggered seismic data
acquisition. In a triggered mode, a seismic station or a seismic network still processes all incoming seismic signals in
real time (or in near-real-time) but incoming data is not stored continuously and permanently. Processing software - a
trigger algorithm - serves for the detection of typical seismic signals (earthquakes, controlled source seismic signals,
underground nuclear explosion signals, etc.) in the constantly present seismic noise signal. Once an assumed seismic
event is detected, recording and storing of all incoming signals starts. It stops after the trigger algorithm ‘declares’ the
end of the seismic signal.

The short-time-average/long-time-average STA/LTA trigger is usually used in weak-motion applications that try to
record as many seismic events as possible. These are the applications where the STA/LTA algorithm is most useful.
It is nearly a standard trigger algorithm in portable seismic recorders, as well as in many real time processing software
packages of the weak-motion seismic networks. However, it may also be useful in many strong motion applications,
except when interest is limited to the strongest earthquakes.

7.1.2 How does STA/LTA works?

The STA/LTA algorithm processes filter seismic signals in two moving time windows – a short-time average window
(STA) and a long-time average window (LTA). The STA measures the ‘instant’ amplitude of the seismic signal and
watches for earthquakes. The LTA takes care of the current average seismic noise amplitude.

First, the absolute amplitude of each data sample of an incoming signal is calculated. Next, the average of absolute
amplitudes in both windows is calculated. In a further step, a ratio of both values — STA/LTA ratio—is calculated.
This ratio is continuously compared to a user selected threshold value - STA/LTA trigger threshold level. If the ratio
exceeds this threshold, a channel trigger is declared. A channel trigger does not necessarily mean that a multi-channel
data logger or a network actually starts to record seismic signals. All seismic networks and most seismic recorders
have a ‘trigger voting’ mechanism built in that defines how many and which channels have to be in a triggered state
before the instrument or the network actually starts to record data. To simplify the explanation, we shall observe only
one signal channel. We will assume that a channel trigger is equivalent to a network or a recorder trigger.

53



CUSeisTut, Release 0.0.1

After the seismic signal gradually terminates, the channel detriggers. This happens when the current STA/LTA ratio
falls below another user-selected parameter - STA/LTA detrigger threshold level. Obviously, the STA/LTA detrigger
threshold level should be lower (or rarely equal) than the STA/LTA trigger threshold level.

In addition to the data acquired during the ‘trigger active’ time, seismic networks and seismic recorders add a certain
amount of seismic data to the event file before triggering – pre-event-time (PEM) data. After the trigger active state
terminates, they also add post-event-time (PET). data.

For better understanding, Figure 1 shows a typical local event and the trigger variables (simplified) during STA/LTA
triggering. Graph a) shows an incoming continuous seismic signal (filtered); graph b) shows an averaged absolute
signal in the STA and LTA windows, respectively, as they move in time toward the right side of the graph; and graph
c) shows the ratio of both. In addition, the trigger active state (solid line rectangle), the post-event time (PET), and the
pre-event time (PEM) (dotted line rectangles) are shown. In this example, the trigger threshold level parameter was
set to 10 and the detrigger threshold level to 2 (two short horizontal dotted lines). One can see that the trigger became
active when the STA/LTA ratio value exceeded 10. It was deactivated when the STA/LTA ratio value fell below 2. On
graph d) the actually recorded data file is shown. It includes all event phases of significance and a portion of the seismic
noise at the beginning. In reality, the STA/LTA triggers are usually slightly more complicated, however, the details are
not essential for the understanding and proper setting of trigger parameters.
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7.1.3 Aim of this Module

The STA/LTA trigger parameter settings are always a tradeoff among several seismological and instrumental consider-
ations. Successful capturing of seismic events depends on proper settings of the trigger parameters. To help with this
task, this module explains the STA/LTA trigger functioning and gives general instructions on selecting its parameters.
In addition, several different STA/LTA methods will also be introduced in this module.

7.1.4 Activate ObsPy environment

Note:
We here assume you have already installed ObsPy package in the opspy environment on your computer after finishing
the previous Python ObsPy Tutorial.

Open your terminal and run the following commands.

$ conda activate obspy

7.1.5 Import necessary packages

from obspy.signal.trigger import plot_trigger
from obspy.signal.trigger import classic_sta_lta

7.2 1 Choose an Event and Read the Waveform Data

7.2.1 1.1 Choose an event

from obspy import UTCDateTime
origin_time = UTCDateTime("2015-08-11T16:22:15.200000")

# Coordinates and the magnitude of the event
eq_lon = 123.202
eq_lat = -8.624
eq_dep = 171.9
eq_mag = 3.9

7.2.2 1.2 Choose a station and get the waveform

from obspy.clients.fdsn import Client

# IRIS is one of those providers.
client = Client('IRIS')

# Input station informations
# network

(continues on next page)
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(continued from previous page)

net = 'YS'
# station
sta = 'BAOP'
# location
loc = ''
# channel
cha = 'BHZ'

# starttime
stt = origin_time
# endtime
edt = origin_time + 120

# Get the waveforms from client
st= client.get_waveforms(net, sta, loc, cha, stt, edt)
st.plot()
st.spectrogram()
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7.2.3 1.3 Filter Data

# copy the raw data
st2 = st.copy()
# apply the bandpass between 1.0HZ and 10.0HZ, in order to filter the noise.
st2.filter("bandpass",freqmin=1.0, freqmax=10.0)
st2.plot()

7.2.4 1.4 Triggering Example

df = st2[0].stats.sampling_rate
# set the STA=5 seconds, LTA=20 seconds
cft = classic_sta_lta(st2[0].data, int(5 * df), int(20 * df))
# set the trigger threshold=1.5, detrigger threshold=0.27
plot_trigger(st2[0], cft, 1.5, 0.27)

7.2. 1 Choose an Event and Read the Waveform Data 57



CUSeisTut, Release 0.0.1

7.3 2 How to adjust STA/LTA trigger parameters

To set the basic STA/LTA trigger algorithm parameters one has to select the following:

1. STA window duration

2. LTA window duration

3. STA/LTA trigger threshold level

4. STA/LTA detrigger threshold level

7.3.1 2.1 Selection of short-time average window (STA) duration

Short-time average window measures the ‘instant’ value of a seismic signal or its envelope. Generally, STA duration
must be longer than a few periods of a typically expected seismic signal. If the STA is too short, the averaging of the
seismic signal will not function properly. The STA is no longer a measure of the average signal (signal envelope) but
becomes influenced by individual periods of the seismic signal. On the other hand, STA duration must be shorter than
the shortest events we expect to capture.

The STA can be considered as a signal filter. The shorter the duration selected, the higher the trigger’s sensitivity to
short lasting local earthquakes compared to long lasting and lower frequency distant earthquakes. The longer the STA
duration selected, the less sensitive it is for short local earthquakes. Therefore, by changing the STA duration one can
prioritize capturing of distant or local events.

For regional events, a typical value of STA duration is between 1 and 2 sec. For local earthquakes shorter values around
0.5 to 0.3 s are commonly used in practice.

df = st2[0].stats.sampling_rate
# only set different short-time average window (STA) durations
# sta=5 seconds
cft = classic_sta_lta(st2[0].data, int(5 * df), int(20 * df))
plot_trigger(st2[0], cft, 1.5, 0.27)
# sta=0.5 seconds, represents a smaller value
cft = classic_sta_lta(st2[0].data, int(0.5 * df), int(20 * df))
plot_trigger(st2[0], cft, 1.5, 0.27)
# sta=10 seconds, represents a larger value
cft = classic_sta_lta(st2[0].data, int(10 * df), int(20 * df))
plot_trigger(st2[0], cft, 1.5, 0.27)
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7.3.2 2.2 Selection of long-time average window (LTA) duration

The LTA window measures average amplitude seismic noise. It should last longer than a few ‘periods’ of typically
irregular seismic noise fluctuations. By changing the LTA window duration, one can make the recording more or
less sensitive to regional events in the ‘Pn’-wave range from about 200 to 1500 km epicentral distance. These events
typically have the low-amplitude emergent Pn- waves as the first onset. A short LTA duration allows the LTA value
more or less to adjust to the slowly increasing amplitude of emergent seismic waves. Thus the STA/LTA ratio remains
low in spite of increasing STA (nominator and denominator of the ratio increase). This effectively diminishes trigger
sensitivity to such events. In the opposite case, using a long LTA window duration, trigger sensitivity to the emergent
earthquakes is increased because the LTA value is not so rapidly influenced by the emergent seismic signal, allowing
Sg/Lg waves to trigger the recording.

The LTA duration of 60 seconds is a common initial value. A shorter LTA duration is needed to exclude emergent
regional events from triggering, if desired, or if quickly changing manmade noise is typical for the site. A longer LTA
can be used for distant regional events with very long S-P times and potentially emergent P waves.

# only set different long-time average window (STA) durations
# lta=20 seconds
cft = classic_sta_lta(st2[0].data, int(5 * df), int(20 * df))
plot_trigger(st2[0], cft, 1.5, 0.27)
# lta=10 seconds, represents a smaller value
cft = classic_sta_lta(st2[0].data, int(5 * df), int(10 * df))
plot_trigger(st2[0], cft, 1.5, 0.27)
# lta=50 seconds, represents a larger value
cft = classic_sta_lta(st2[0].data, int(5 * df), int(50 * df))
plot_trigger(st2[0], cft, 1.5, 0.27)
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7.3.3 2.3 Selection of STA/LTA trigger threshold level

The STA/LTA trigger threshold level to the greatest extent determines which events will be recorded and which will
not. The higher value one sets, the more earthquakes will not be recorded, but the fewer false-triggers will result.
The lower the STA/LTA trigger threshold level is selected, the more sensitive the seismic station will be and the more
events will be recorded. However, more frequent false triggers also will occupy data memory and burden the analyst.
An optimal STA/LTA trigger threshold level depends on seismic noise conditions at the site and on one’s tolerance to
falsely triggered records. Not only the amplitude but also the type of seismic noise influence the setting of the optimal
STA/LTA trigger threshold level. A statistically stationary seismic noise (with less irregular fluctuations) allows a lower
STA/LTA trigger threshold level; completely irregular behavior of seismic noise demands higher values.

An initial setting for the STA/LTA trigger threshold level of 4 is common for an average quiet seismic site. Much
lower values can be used only at the very best station sites with no man- made seismic noise. Higher values about 8
and above are required at less favorable sites with significant man-made seismic noise. In strong-motion applications,
higher values are more common due to the usually noisier seismic environment and generally smaller interest in weak
events.

cft = classic_sta_lta(st2[0].data, int(5 * df), int(20 * df))
# only set different STA/LTA trigger threshold levels
# STA/LTA trigger threshold = 1.5
plot_trigger(st2[0], cft, 1.5, 0.27)
# STA/LTA trigger threshold = 0.5, represents a small trigger threshold value
plot_trigger(st2[0], cft, 0.5, 0.27)
# STA/LTA trigger threshold = 4, represents a large trigger threshold value
plot_trigger(st2[0], cft, 4, 0.27)
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7.3.4 2.4 Selection of STA/LTA detrigger threshold level

The STA/LTA detrigger threshold level determines the termination of data recording. To include as much of the coda
waves as possible, a low value is required. If one uses coda duration for magnitude determinations, such setting is
obvious. However, a too low STA/LTA detrigger threshold level is occasionally dangerous. It may cause very long
or even endless records, for example, if a sudden increase in seismic noise does not allow the STA/LTA ratio to fall
below the STA/LTA detrigger threshold level. On the other hand, if one is not interested in coda waves, a higher value
of STA/LTA detrigger threshold level enables significant savings in data memory and/or data transmission time. Note
that coda waves of distant earthquakes can be very long.

A typical initial value of the STA/LTA detrigger threshold level is 2 to 3 for seismically quiet sites and weak motion
applications. For noisier sites, higher values must be set. For strong- motion applications, where coda waves are not of
the highest importance, higher values are frequently used.

cft = classic_sta_lta(st2[0].data, int(5 * df), int(20 * df))
# only set different STA/LTA detrigger threshold levels
# STA/LTA trigger threshold = 1.5
plot_trigger(st2[0], cft, 1.5, 0.27)
# STA/LTA detrigger threshold = 0.1, represents a small trigger threshold value
plot_trigger(st2[0], cft, 1.5, 0.1)
# STA/LTA detrigger threshold = 1, represents a large trigger threshold value
plot_trigger(st2[0], cft, 1.5, 1)
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7.4 3 Available STA/LTA Methods

7.4.1 3.1 Classic Sta Lta

# we already import the classic_sta_lta at the begining.
df = st2[0].stats.sampling_rate
# set the STA=5 seconds, LTA=20 seconds
cft = classic_sta_lta(st2[0].data, int(5 * df), int(20 * df))
# set the trigger threshold=1.5, detrigger threshold=0.27
plot_trigger(st2[0], cft, 1.5, 0.27)

66 Chapter 7. Earthquake Detection STA/LTA



CUSeisTut, Release 0.0.1

7.4.2 3.2 Recursive Sta Lta

from obspy.signal.trigger import recursive_sta_lta
# set the STA=5 seconds, LTA=23 seconds
cft = recursive_sta_lta(st2[0].data, int(5 * df), int(23 * df))
# set the trigger threshold=1.5, detrigger threshold=0.27
plot_trigger(st2[0], cft, 1.5, 0.27)

7.4.3 3.3 Carl-Sta_Trig

from obspy.signal.trigger import carl_sta_trig
# set the STA=5 seconds, LTA=20 seconds
cft = carl_sta_trig(st2[0].data, int(5 * df), int(20 * df), 0.8, 0.8)
# set the trigger threshold=20, detrigger threshold=-50.0
plot_trigger(st2[0], cft, 20.0, -50.0)
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7.4.4 3.4 Delayed Sta Lta

from obspy.signal.trigger import delayed_sta_lta
# set the STA=5 seconds, LTA=20 seconds
cft = delayed_sta_lta(st2[0].data, int(2 * df), int(20 * df))
# set the trigger threshold=1.5, detrigger threshold=12
plot_trigger(st2[0], cft, 1.5,12)
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7.4.5 3.5 Z-Detect

from obspy.signal.trigger import z_detect
# set the LTA=10 seconds
cft = z_detect(st2[0].data, int(10 * df))
# set the trigger threshold=-0.2, detrigger threshold=0
plot_trigger(st2[0], cft, -0.2, 0)
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7.5 4 Detect events on multiple traces by using STA/LTA

7.5.1 4.1 Get the waveform data with more than 1 station

# Set up a list for bulk request
bulk = [('YS', 'BAOP', '', 'BHZ', origin_time, origin_time+120),

('YS', 'HADA', '', 'BHZ', origin_time, origin_time+120),
('YS', 'SINA', '', 'BHZ', origin_time, origin_time+120),
('YS', 'ALRB', '', 'BHZ', origin_time, origin_time+120)]

st_bulk = client.get_waveforms_bulk(bulk)
st_bulk.plot()

70 Chapter 7. Earthquake Detection STA/LTA



CUSeisTut, Release 0.0.1

7.5.2 4.2 Filter the data

# make a copy of raw data
st2 = st_bulk.copy()
# apply the bandpass
st2.filter('bandpass',freqmin=1,freqmax=10)
st2.plot()
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7.5.3 4.2 Using STA/LTA to detect events

# we already import the classic_sta_lta at the begining.
# set a loop to detect the events using STA/LTA, the classic_sta_lta method is used here.
# you can try other STA/LTA methods and find the differences
for tr in st2:

df = tr.stats.sampling_rate
cft = classic_sta_lta(tr.data, int(6 * df), int(20 * df))
plot_trigger(tr, cft, 3, 0.3)
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CHAPTER

EIGHT

EARTHQUAKE ABSOLUTE LOCATION

8.1 Introduction

The earthquake detection process finds the arrival times of P&S wave on different stations for each event. The next step
is to get the earthquake location (longitude(x),latitude(y),depth(z)) and origin time (t). The central idea is to invert
the data by the equations governing the relationship between arrival data and hypocenter location. However, due to
heterogenities in real earth setting, a solution that fits all data rarely exists.

Since the eathquake location cannot fit well with all data. It is mostly determined by the location with minimum misfit.
One widely used method is the least-square inversion. Another method used is the grid search method which earthquake
location is searched iteratively by defined possible model ranges. Each grid is assumed to be the earthquake location
and their misfit with the data is computed. Hence, the minimum misfit location is determine. One large limitation of
grid search is the resolution is controlled by grid size. . . .

The most widely used methods are based on least-square algorithm. That is, the earthquake location is determined
by the minimum misfit with observations. One least-square method is the grid search method. In this method, the
possible space is splited into 3D grids, and then the misfit of each grid as the earthquake location is calculated one by
one. The earthquake is then considered to be occurred inside the grid with minimum misfit. The grid size controls the
earthquake location resolution, a larger grid size will lead to a larger uncertainty (the range where the true earthquake
location might be). However, a smaller grid size will lead to heavy calculation load due to dramtically increased grid
quantity. Therefore, there is a trade-off between resolution and calculation efficiency in this method.

Another earthquake location method is by inversion. The equation is linearized and solved iteratively by least-sqaure
methods. This method does not require intense computation and converge fastly. It is therefore widely used. . . .

Another least-square earthquake location method is the iterative absolute earthquake location method, which can
achieve high-resolution location with ideal calculation efficiency and is widely used. In this session, we introduce
the details of this method. We start from simple one-layer model for practice and then run into real data process-
ing using the popular HYPOINVERSE program, which is developed based on the iterative absolute earthquake location
method.
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8.1.1 Theory Background

The arrival time recorded by one station could be presented as:

𝑇 𝑘
𝑖 = 𝑂𝑘 +

∫︁ 𝑟

𝑠

𝑢𝑑𝑆

where 𝑇 𝑘
𝑖 is the arrival time of event 𝑘 on station 𝑖. In the right side of equation, there are two components: 1) The

origin time of event 𝑘 𝑂𝑘; 2) The event travel time. It is the integral over the ray path. The 𝑠 denotes the source location,
𝑟 represents the receiver (station) location, 𝑢 is the reciprocal of velocity named slowness.

Assume the event with true source parameters mtrue = (𝑥𝑡𝑟𝑢𝑒, 𝑦𝑡𝑟𝑢𝑒, 𝑧𝑡𝑟𝑢𝑒, 𝑜𝑡𝑟𝑢𝑒)
𝑇 is recorded by 𝑛 stations, we use

dobs to denote the arrival times of stations, then mtrue should satisfy:

Fmtrue = dobs

The relationship between m and d is non-linear because integral is involved as shown in previous equation. For
earthquake parameters that are close to mtrue, we present them as m = mtrue + Δm, the Δm will lead to variation
in dobs + Δd

According to Taylor Expansion theorem, we have:

F(m + Δm) = Fm + F′Δm + ...,

Neglect the items after the first-order partial derivative, we then have Δd = F′Δm.

Given the initial location and origin time m0 = (𝑥0, 𝑦0, 𝑧0, 𝑡0), we can calculate the corresponding arrival time at
each station dcal and the Δd. Using the Δd we can estimate the Δm. By updating the Δm, an absolute location of
hypocenter can be derived.

8.1.2 Contents of this tutorial

We will introduce how to derive and analyze absolute locations of hypocenters in pyhon which has been devided into
listed parts:

1. Gird search method

2. Iteration method

3. Error analyze

Authors: ZI Jinping & SONG Zilin, Earth Science System Program, CUHK.

Testers: XIA Zhuoxuan & SUN Zhangyu, Earth Science System Program, CUHK.
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8.2 Python Environment and model Setup

We’ll first generate synthetic arrival times on stations from one earthquake location, which is called Forward Mod-
elling. We’ll then try to re-generate hypocentral location using these known station arrival times, which is called
Inversion. In this tutorial, we use one-layer model to avoid complicated ray-tracing (Snell's law)

Note:
The purpose is that, by comparing the difference between inverted location and true location, we can: 1. see
whether the location process runs properly; 2. conduct error analysis.

8.2.1 Python environment

import numpy as np
import matplotlib.pyplot as plt
import time
from matplotlib.patches import Ellipse
from mpl_toolkits.mplot3d import Axes3D

Note:
Define functions that will be used later.

def matrix_show(*args,**kwargs):
"""
Show matrix values in grids shape
Parameters:cmap="cool",gridsize=0.6,fmt='.2f',label_data=True
"""
ws = []
H = 0
str_count = 0
ndarr_count = 0
new_args = []
for arg in args:

if isinstance(arg,str):
new_args.append(arg)
continue

if isinstance(arg,list):
arg = np.array(arg)

if len(arg.shape)>2:
raise Exception("Only accept 2D array")

if len(arg.shape) == 1:
n = arg.shape[0]
tmp = np.zeros((n,1))
tmp[:,0] = arg.ravel()
arg = tmp

h,w = arg.shape
if h>H:

H=h
(continues on next page)
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ws.append(w)
new_args.append(arg)
ndarr_count += 1

W = np.sum(ws)+len(ws) # text+matrix+text+...+matrix+text
if W<0:

raise Exception("No matrix provided!")

fmt = '.2f'
grid_size = 0.6
cmap = 'cool'
label_data = True
for arg in kwargs:

if arg == "fmt":
fmt = kwargs[arg]

if arg == 'grid_size':
grid_size = kwargs[arg]

if arg == 'cmap':
cmap = kwargs[arg]

if arg == 'label_data':
label_data = kwargs[arg]

fig = plt.figure(figsize=(W*grid_size,H*grid_size))
gs = fig.add_gridspec(nrows=H,ncols=W)

wloop = 0
matrix_id = 0
for arg in new_args:

if isinstance(arg,str):
ax = fig.add_subplot(gs[0:H,wloop-1:wloop])
ax.axis("off")
ax.set_xlim(0,1)
ax.set_ylim(0,H)
ax.text(0.5,H/2,arg,horizontalalignment='center',verticalalignment='center')

if isinstance(arg,np.ndarray):
h,w = arg.shape
hlow = int(np.round((H-h+0.01)/2)) # Find the height grid range
hhigh = hlow+h
wlow = wloop
whigh = wlow+w

# print("H: ",H,hlow,hhigh,"; W ",W,wlow,whigh)
ax = fig.add_subplot(gs[hlow:hhigh,wlow:whigh])

plt.pcolormesh(arg,cmap=cmap)
for i in range(1,w):

plt.axvline(i,color='k',linewidth=0.5)
for j in range(1,h):

plt.axhline(j,color='k',linewidth=0.5)
if label_data:

for i in range(h):
for j in range(w):

plt.text(j+0.5,i+0.5,format(arg[i,j],fmt),
horizontalalignment='center',
verticalalignment='center')

(continues on next page)
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plt.xlim(0,w)
plt.ylim([h,0])
plt.xticks([])
plt.yticks([])
wloop+=w+1
matrix_id+=1

plt.show()

8.2.2 Model setup

Define basic parameters:

1. Station locations (stats)

2. True hypocenter location (hyc_true)

3. Velocity (Vp)

stas_set1 = np.array([[-45,16,0],
[-44,10,0],
[-12,50,0],
[-11,-25,0],
[-1,-11,0],
[5,-19,0],
[20,11,0],
[23,-39,0],
[35,9,0],
[42,-27,0]])

stas = stas_set1
nsta = stas.shape[0]

hyc_true = np.array([0.5,0.5,9.45,0]) # The true hypocenter value(x,y,z,t)
Vp = 5

plt.plot(stas[:,0],stas[:,1],'^',label="Station")
plt.plot(hyc_true[0],hyc_true[1],'r*',label='True hypocenter')
plt.xlabel("X (km)")
plt.ylabel("Y (km)")
plt.gca().set_aspect("equal")
plt.legend();
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Generate synthetic arrival times

dobs = np.zeros((nsta,1))
for i in range(dobs.shape[0]):

dx = stas[i,0]-hyc_true[0]
dy = stas[i,1]-hyc_true[1]
dz = stas[i,2]-hyc_true[2]
dobs[i,0] = np.sqrt(dx**2+dy**2+dz**2)/Vp+hyc_true[3]

nobs = dobs.shape[0]

8.3 The Grid-Search Method

The grid search method separates the possible earthquake location zone into 3-D grids, trying each grid as earthquake
center and calculating the residual. The grid where earthquake is located should has the lowest residual.

8.3.1 1. Set up grids

dx = 1
dy = 1
dz = 1
xs = np.arange(-40,41,dx)
ys = np.arange(-40,41,dy)
zs = np.arange(0,20,dz)
nx = len(xs)
ny = len(ys)
nz = len(zs)
print("Total number of nodes are: ",) # For students, fill in the blank

(continues on next page)
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fig = plt.figure(figsize=(6,6))
ax = plt.axes(projection='3d')
nodes = []
for x in xs[:-1]:

for y in ys[:-1]:
for z in zs[:-1]:

nodes.append([x,y,z])
nodes = np.array(nodes)
ax.scatter3D(nodes[:,0],nodes[:,1],nodes[:,2],c=nodes[:,2],s=0.1)
ax.set_xlabel("X (km)")
ax.set_ylabel("Y (km)")
ax.set_zlabel("Dep (km)")
ax.set_zlim([20,0])
plt.show()
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8.3.2 2. Try each grid and calculate error

V = Vp
sq_errs = np.zeros((nx,ny,nz))
ta = time.time() # The time before calculation
for i in range(len(xs)):

for j in range(len(ys)):
for k in range(len(zs)):

dcal = np.zeros((nsta,1))
x = xs[i];y=ys[j];z=zs[k]
for m in range(nsta):

sta_x = stas[m,0]
sta_y = stas[m,1]
sta_z = stas[m,2]
dist = np.sqrt((sta_x-x)**2+(sta_y-y)**2+(sta_z-z)**2)
dcal[m,0] = dist/V

sq_err = np.linalg.norm(dobs-dcal)**2
sq_errs[i,j,k] = sq_err

tb = time.time() # The time after calculation
print("Time for location process: ",format(tb-ta,'.3f'),'s')

8.3.3 3. Find the minimum misfit grid

sq_err_min = np.min(sq_errs) # Get the min value
sq_err_max = np.max(sq_errs)
kk = np.where(sq_errs==sq_err_min) # Get the value indexs
idx = kk[0][0]
idy = kk[1][0]
idz = kk[2][0]
print(f"Minimum occurred in x={xs[idx]}, y={ys[idy]}, z={zs[idz]}")

Minimum occurred in x=1, y=1, z=9

ncol = 4
if nz%ncol==0:

nrow = int(nz/ncol)
else:

nrow = int(nz/ncol)+1
xs_mesh,ys_mesh = np.meshgrid(xs,ys)
fig, axs = plt.subplots(nrow,ncol,figsize=(2.5*ncol,2*nrow),sharex=True,sharey=True)
axs = axs.ravel()
for i in range(nz):

axs[i].pcolormesh(xs_mesh,ys_mesh,sq_errs[:,:,i],
shading='auto',cmap='jet',vmin=sq_err_min,vmax=sq_err_max)

plt.sca(axs[i]) # set current active axis
plt.colorbar(pm)
tmp_sq_err_min = np.min(sq_errs[:,:,i])
_tmp_sq_err_min = format(tmp_sq_err_min,'6.3f')
tmp_kk = np.where(sq_errs[:,:,i]==tmp_sq_err_min)
idx = tmp_kk[0][0]
idy = tmp_kk[1][0]

(continues on next page)
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_Z = str(zs[i]).zfill(2)
if tmp_sq_err_min == sq_err_min:

print(f"Z={_Z},min_sq_error={_tmp_sq_err_min}, x={xs[idx]}, y={ys[idy]},global␣
→˓minimum")

axs[i].plot(xs[idx],ys[idx],'wx',ms=10)
else:

print(f"Z={_Z},min_sq_error={_tmp_sq_err_min}, x={xs[idx]}, y={ys[idy]}")
axs[i].set_aspect('equal')
axs[i].set_title(f"Depth={zs[i]} km")

# adjust plot
plt.tight_layout()

Z=00,min_sq_error= 0.915, x=0, y=2
Z=01,min_sq_error= 0.898, x=0, y=2
Z=02,min_sq_error= 0.845, x=0, y=1
Z=03,min_sq_error= 0.743, x=0, y=1
Z=04,min_sq_error= 0.613, x=0, y=1
Z=05,min_sq_error= 0.469, x=0, y=1
Z=06,min_sq_error= 0.326, x=0, y=1
Z=07,min_sq_error= 0.203, x=0, y=1
Z=08,min_sq_error= 0.119, x=0, y=1
Z=09,min_sq_error= 0.072, x=1, y=1,global minimum
Z=10,min_sq_error= 0.073, x=0, y=0
Z=11,min_sq_error= 0.147, x=1, y=0
Z=12,min_sq_error= 0.323, x=1, y=0
Z=13,min_sq_error= 0.641, x=1, y=0
Z=14,min_sq_error= 1.124, x=1, y=0
Z=15,min_sq_error= 1.757, x=1, y=-1
Z=16,min_sq_error= 2.562, x=1, y=-1
Z=17,min_sq_error= 3.594, x=1, y=-1
Z=18,min_sq_error= 4.874, x=1, y=-1
Z=19,min_sq_error= 6.422, x=1, y=-1
Z=20,min_sq_error= 8.226, x=1, y=-2
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8.3.4 Exercise

Modify V=4.9 and redo the grid search, what do you find?
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8.4 Iterative Method

The arrival time recorded by one station could be presented as:

𝑇 𝑘
𝑖 = 𝑂𝑘 +

∫︁ 𝑟

𝑠

𝑢𝑑𝑠

where 𝑇 𝑘
𝑖 is the arrival time of event k on station i, s is source, r is receiver, u is slowness. In the right side of equation,

there are two components:

1. The origin time :math: O_k;

2. The travel time. It is the integral over the ray path.

It could be presented as below:

Fmtrue = dobs

Note the equation above is non-linear. Using Taylor Expansion, we have:

F(m + Δm) = Fm +
𝜕F

𝜕m
Δm + ...,

where m = (𝑥, 𝑦, 𝑧, 𝑡). Ingoring high-order component:

Δd =
𝜕F

𝜕m
Δm

It means the misfit of data is related to the misfit of earthquake location, the relationship is presented as:

𝐹 𝑘
𝑖 = 𝑇 𝑘

𝑖 = 𝑂𝑘 +

∫︁ 𝑟

𝑠

𝑢𝑑𝑠

𝜕F

𝜕m
=

𝜕𝑇

𝜕𝑥
∆𝑥 +

𝜕𝑇

𝜕𝑦
∆𝑦 +

𝜕𝑇

𝜕𝑧
∆𝑧 +

𝜕𝑇

𝜕𝑡
∆𝑡

More in detail: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑇
𝜕𝑥 = 𝑑𝑥/𝑑𝑠 · 𝑢
𝜕𝑇
𝜕𝑦 = 𝑑𝑦/𝑑𝑠 · 𝑢
𝜕𝑇
𝜕𝑧 = 𝑑𝑧/𝑑𝑠 · 𝑢
𝜕𝑇
𝜕𝑡 = 1

where 𝑑𝑠 =
√︀

(𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2

For one-layer model, 𝑇 𝑘
𝑖 = 𝑜𝑡 +

√︀
𝑥2 + 𝑦2 + 𝑧2/𝑣, where 𝑥, 𝑦, 𝑧 denotes distance between the source (earthquake

location) and receiver(station), 𝑣 is velocity. Partial derivatives of one-layer model are:

𝜕𝑇 𝑘
𝑖

𝜕𝑥
=

𝑥√︀
𝑥2 + 𝑦2 + 𝑧2𝑣

𝜕𝑇 𝑘
𝑖

𝜕𝑦
=

𝑦√︀
𝑥2 + 𝑦2 + 𝑧2𝑣

𝜕𝑇 𝑘
𝑖

𝜕𝑦
=

𝑧√︀
𝑥2 + 𝑦2 + 𝑧2𝑣

𝜕𝑇 𝑘
𝑖

𝜕𝑜𝑡
= 1
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⎡⎢⎢⎢⎢⎣
𝜕𝑇1

𝜕𝑥
𝜕𝑇1

𝜕𝑦
𝜕𝑇1

𝜕𝑧 1
𝜕𝑇2

𝜕𝑥
𝜕𝑇2

𝜕𝑦
𝜕𝑇2

𝜕𝑧 1
...

...
...

...
𝜕𝑇𝑖

𝜕𝑥
𝜕𝑇𝑖

𝜕𝑦
𝜕𝑇𝑖

𝜕𝑧 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

∆𝑥
∆𝑦
∆𝑧
∆𝑡

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑑𝑜𝑏𝑠1 − 𝑑𝑐𝑎𝑙1

𝑑𝑜𝑏𝑠2 − 𝑑𝑐𝑎𝑙2
...

𝑑𝑜𝑏𝑠𝑖 − 𝑑𝑐𝑎𝑙𝑖

⎤⎥⎥⎥⎦
After solve this equation, we can update the earthquake location:

m = m + Δm

This process generally will not finish in one iteration, more iterations are needed to update the locations until no apparent
change of misfit.

8.4.1 1. Give an initial source parameters

The station which records the earliest arrival is the cloest to the hypocenter, so it is reasonable to be set as initial
location:

1. The same x and y with the closest station;

2. Initial depth at 5 km;

3. Initial origin time 1 sec before the earliest arrival;

idx = np.argmin(dobs) # The index of station
dmin = np.min(dobs) # The minimum arrival time

hyc_init = np.zeros(4); # Init array
(continues on next page)
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hyc_init[:2] = stas[idx,:2]; # Set the same x,y with station
hyc_init[2] = 5; # Set initial depth 5 km
hyc_init[3] = dmin-1; # Set initial event time 1s earlier than arrival
hyc_loop = hyc_init.copy()

8.4.2 2. Calculate the arrival times based on input location

dcal = np.zeros((nsta,1))
for i in range(dobs.shape[0]):

dx = stas[i,0]-hyc_loop[0]
dy = stas[i,1]-hyc_loop[1]
dz = stas[i,2]-hyc_loop[2]
dcal[i,0] = np.sqrt(dx**2+dy**2+dz**2)/Vp+hyc_loop[3]

8.4.3 3. Measure the misfit between the 𝑑𝑜𝑏𝑠 and the 𝑑𝑐𝑎𝑙

delta_d = dobs - dcal
e2 = 0
for i in range(delta_d.shape[0]):

e2 += delta_d[i,0]**2
print(f"The square error: ",format(e2,'5.6f'))

The square error: 49.466691

8.4.4 4. Calculate Partial Derivatives

G = np.zeros((nsta,4))
for i in range(nsta):

for j in range(3):
denomiter = np.sqrt((hyc_loop[0]-stas[i,0])**2+(hyc_loop[1]-stas[i,1])**2+(hyc_

→˓loop[2]-stas[i,2])**2)
G[i,j]=(hyc_loop[j]-stas[i,j])/denomiter/Vp

G[:,3]=1

8.4.5 5. Estimation of Δ𝑚, generalized inversion problem

Define ∆𝑚 = (∆𝑥,∆𝑦,∆𝑧,∆𝑡), the relationship between ∆𝑚 and ∆𝑑 is:

𝐺∆𝑚 = ∆𝑑

𝐺 is not a square matrix, 𝐺𝑇𝐺 is a square matrix, we then have:

𝐺𝑇𝐺∆𝑚 = 𝐺𝑇 ∆𝑑

If the inverse of 𝐺𝑇𝐺 exists (the determinnant != 0, in here we have 10 observations to solve for 4 parameters), then:

∆𝑚 = (𝐺𝑇𝐺)−1𝐺𝑇 ∆𝑑

8.4. Iterative Method 87



CUSeisTut, Release 0.0.1

GTG = np.matmul(G.T,G)
matrix_show(G.T,"*",G,"=",GTG)

GTG_inv = np.linalg.inv(GTG)
GTG_inv_GT = np.matmul(GTG_inv,G.T)
delta_m = np.matmul(GTG_inv_GT,delta_d)
print("delta m: ",delta_m.ravel())

delta m: [ 1.27106047 10.82922813 9.25013738 -1.91360853]

8.4.6 6. Update hypocenter

hyc_loop = np.add(hyc_loop,delta_m.ravel())
print("After this run, results (x,y,z,t) are:",hyc_loop)
print("True location parameters(x,y,z,t) are:",hyc_true)

After this run, results (x,y,z,t) are: [ 0.27106047 -0.17077187 14.25013738 0.07839748]
True location parameters(x,y,z,t) are: [0.5 0.5 9.45 0. ]

8.4.7 7. Start new iteration

Move back to step two
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8.4.8 8. Integrated Solution

Summarize previous steps into a loop function

k = 0
niter = 10
hyc_loop = hyc_init.copy()

dcal = np.zeros((10,1))
for i in range(dobs.shape[0]):

dx = stas[i,0]-hyc_loop[0]
dy = stas[i,1]-hyc_loop[1]
dz = stas[i,2]-hyc_loop[2]
dcal[i,0] = np.sqrt(dx**2+dy**2+dz**2)/Vp+hyc_loop[3]

delta_d = dobs - dcal

while k < niter:
# >>>>> Build G matrix >>>>>>
G = np.zeros((10,4))
G[:,3]=1
for i in range(10):

for j in range(3):
denomiter = np.sqrt((hyc_loop[0]-stas[i,0])**2+(hyc_loop[1]-stas[i,

→˓1])**2+(hyc_loop[2]-stas[i,2])**2)
G[i,j]=(hyc_loop[j]-stas[i,j])/denomiter/Vp

# >>>>> Invert the m value >>>>
GTG = np.matmul(G.T,G)
GTG_inv = np.linalg.inv(GTG)
GTG_inv_GT = np.matmul(GTG_inv,G.T)
delta_m = np.matmul(GTG_inv_GT,delta_d)

# >>>>> Update the hypocenter loop >>>>>
hyc_loop = np.add(hyc_loop,delta_m.ravel())
k = k+1
dcal = np.zeros((10,1))
for i in range(dobs.shape[0]):

dx = stas[i,0]-hyc_loop[0]
dy = stas[i,1]-hyc_loop[1]
dz = stas[i,2]-hyc_loop[2]
dcal[i,0] = np.sqrt(dx**2+dy**2+dz**2)/Vp+hyc_loop[3]

delta_d = dobs - dcal
e2 = 0
for i in range(delta_d.shape[0]):

e2 += delta_d[i,0]**2
print(f"Iteration {k} square error: ",format(e2,'10.8f'))

# >>>>> add codes to end the loop if error is small >>>>>

hyc_estimate = hyc_loop
print(hyc_estimate)

Iteration 1 square error: 1.85
(continues on next page)
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Iteration 2 square error: 0.03
Iteration 3 square error: 0.00
Iteration 4 square error: 0.00
[5.00000001e-01 5.00000005e-01 9.45000023e+00 7.74200567e-09]

8.4.9 Exercise (10 min)

1. Calculate the time used for the iterative location. Compare it with the grid search method.

2. It is a common practice that if the square error lower than a threshold, finish the iteration in advance. Add one
criterion in above codes: if square error lows than 0.0000001, break the iteration.

3. It is common to set up an indicator parameter “istop” to show the stop reason of iteration, if iteration stops due
to run over all the iterations, then istop = 0; if the iteration stops due to error threshold achieved, then istop = 1.

4. Try to change parameters, e.g. Vp, hyc_true, what’s the maximum iterations needed to converge?

8.5 More Practical Case

In the iterative earthquake case, we first generate the arrival times and then invert for the earthquake location, we find
that it is very efficient, fast, and accurate to do so. The error decreases to nearly 0 in around 3 iterations. However, in
real cases, it is rare to have error decreased to nearly 0 due to series of factors:

1. Phase picking error;

2. Time - error of stations;

3. Others.

8.5.1 Phase-Picking Error

Could you find the P arrival in below waveforms?
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Note:
The most advanced machine learning phase-pick method has a standard error of ~0.08s in picking P phases.

It is reasonable to assume the picking errors follow the Gaussian Distribution, the probability we pick the phase arrival
close to the true arrival is high and the probability that picked phase is far offset the true arrival is weak.

𝜎2 =
1

𝐾

𝐾∑︁
𝑖=1

(𝑑𝑖 − 𝑑)2

𝑓(𝑥;𝜇, 𝜎) =
1

𝜎
√

2𝜋
𝑒𝑥𝑝

(︀
− (𝑥− 𝜇)2

2𝜎2

)︀

Credit: Wikipedia

1. Generate random normal distribution error in python
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mu = 0
sigma = 0.1
errors = np.random.normal(mu,sigma,size=(100000,1))
bins = np.arange(mu-3*sigma,mu+3*sigma,0.01)
plt.hist(errors,bins=bins);
plt.xlabel("Error")
plt.ylabel("Quantity")

2. Generate repeatable random normal distribution noise

print("Below ten sets of random data:")
for i in range(10):

errors = np.random.normal(mu,sigma,size=(5,1))
print(errors.ravel())

print("Below ten sets of repeatable random data:")
for i in range(10):

seed = 5
np.random.seed(seed)
errors = np.random.normal(mu,sigma,size=(5,1))
print(errors.ravel())

Below ten sets of random data:
[ 0.14576948 -0.03545659 0.01865004 0.06909433 0.10035061]
[-0.11188185 -0.00634874 0.12890032 -0.1214119 -0.07929655]
[-0.08868027 0.07272929 -0.04400131 0.03902781 -0.05310638]
[-0.19492339 0.05280531 0.01207171 -0.02196256 0.03234145]
[ 0.03812467 0.19008607 0.0689304 -0.06495476 -0.03542378]
[-0.16057787 0.00484336 -0.00963628 -0.09241747 -0.10234195]
[-0.0997116 0.07139755 -0.03709032 0.07398414 -0.04919343]

(continues on next page)
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[ 0.04309643 0.01775167 0.11226868 -0.03265422 0.29264822]
[-0.10930484 0.03639013 0.08391139 0.0606412 -0.07792868]
[-0.00797514 -0.08165227 0.04543699 0.0669631 -0.16680696]
Below ten sets of repeatable random data:
[ 0.04412275 -0.03308702 0.24307712 -0.02520921 0.01096098]
[ 0.04412275 -0.03308702 0.24307712 -0.02520921 0.01096098]
[ 0.04412275 -0.03308702 0.24307712 -0.02520921 0.01096098]
[ 0.04412275 -0.03308702 0.24307712 -0.02520921 0.01096098]
[ 0.04412275 -0.03308702 0.24307712 -0.02520921 0.01096098]
[ 0.04412275 -0.03308702 0.24307712 -0.02520921 0.01096098]
[ 0.04412275 -0.03308702 0.24307712 -0.02520921 0.01096098]
[ 0.04412275 -0.03308702 0.24307712 -0.02520921 0.01096098]
[ 0.04412275 -0.03308702 0.24307712 -0.02520921 0.01096098]
[ 0.04412275 -0.03308702 0.24307712 -0.02520921 0.01096098]

3. Update the observed data by adding noise

mu = 0 # mean of error
sigma = 0.1 # standard deviation of error
np.random.seed(100)
errors = np.random.normal(mu,sigma,size=(nsta,1))
dobs_noise = dobs+errors

4. Re-run the inversion

Vp = 5
k = 0
niter = 10
hyc_loop = hyc_init.copy()
while k < niter:

dcal = np.zeros((10,1))
for i in range(dobs_noise.shape[0]):

dx = stas[i,0]-hyc_loop[0]
dy = stas[i,1]-hyc_loop[1]
dz = stas[i,2]-hyc_loop[2]
dcal[i,0] = np.sqrt(dx**2+dy**2+dz**2)/Vp+hyc_loop[3]

delta_d = dobs_noise - dcal
e2 = 0
for i in range(delta_d.shape[0]):

e2 += delta_d[i,0]**2
print(f"Iteration {k} square error: ",format(e2,'5.2f'))

# >>>>> Build G matrix >>>>>>
G = np.zeros((10,4))
G[:,3]=1
for i in range(10):

for j in range(3):
denomiter = np.sqrt((hyc_loop[0]-stas[i,0])**2+(hyc_loop[1]-stas[i,

→˓1])**2+(hyc_loop[2]-stas[i,2])**2)
G[i,j]=(hyc_loop[j]-stas[i,j])/denomiter/Vp

# >>>>> Invert the m value >>>>
(continues on next page)
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GTG = np.matmul(G.T,G)
GTG_inv = np.linalg.inv(GTG)
GTG_inv_GT = np.matmul(GTG_inv,G.T)
delta_m = np.matmul(GTG_inv_GT,delta_d)
if np.array_equal(delta_m.ravel(),[0,0,0,0]):

print("Here")

# >>>>> Update the hypocenter loop >>>>>
hyc_loop = np.add(hyc_loop,delta_m.ravel())
k = k+1

# >>>>> End the loop if error is small >>>>>
if e2<0.000001:

break
hyc_estimate = hyc_loop
print(hyc_estimate)

Iteration 0 square error: 49.76
Iteration 1 square error: 1.84
Iteration 2 square error: 0.09
Iteration 3 square error: 0.07
Iteration 4 square error: 0.07
Iteration 5 square error: 0.07
Iteration 6 square error: 0.07
Iteration 7 square error: 0.07
Iteration 8 square error: 0.07
Iteration 9 square error: 0.07
[ 0.66712215 0.30531256 9.67044461 -0.03328683]

Exercise (2 min)
1. What do you find from the inversion? compare the results with the previous run.

2. Change the sigma value and check the variation of the inversion results.

8.5.2 Error analysis

The error in observed data will definitely lead to uncertainties in the estimation of earthquake location parameters.
Their relationship could be described as:

𝜎2
𝑚 = 𝜎2

𝑑(𝐺𝑇𝐺)−1

For two parameters, the definition of covariance is:

𝜎𝑥𝑦
2 =

1

𝐾

𝐾∑︁
𝑘=1

(𝑥𝑘 − 𝑥̄)(𝑦𝑘 − 𝑦)

Note:
Wanna know how this relationship derived? Page 435 of An Introduction to Seismology, Earthquakes, and Earth
Structure (2003)
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sigma_d = np.std(delta_d)
sigma_d2 = sigma_d**2
sigma_m2 = sigma_d2 * GTG_inv

def present_loc_results(hyc,sig_square=None,std_fmt='.2f'):
"""
Print earthquake location results
"""
_x = format(np.round(hyc[0],4),format("6.2f"))
_y = format(np.round(hyc[1],4),format("6.2f"))
_z = format(np.round(hyc[2],4),format("6.2f"))
_t = format(np.round(hyc[3],4),format("6.2f"))
if not isinstance(sig_square,np.ndarray):

print("x = ",_x," km")
print("x = ",_y," km")
print("z = ",_z," km")
print("t = ",_t," s")

else:
stdx = sig_square[0,0]**0.5
_stdx = format(np.round(stdx,4),std_fmt)
stdy = sig_square[1,1]**0.5
_stdy = format(np.round(stdy,4),std_fmt)
stdz = sig_square[2,2]**0.5
_stdz = format(np.round(stdz,4),std_fmt)
stdt = sig_square[3,3]**0.5
_stdt = format(np.round(stdt,4),std_fmt)
print("x = ",_x,"±",_stdx," km")
print("y = ",_y,"±",_stdy," km")
print("z = ",_z,"±",_stdz," km")
print("t = ",_t,"±",_stdt," s")

present_loc_results(hyc_estimate,sigma_m2)

x = 0.67 ± 0.20 km
y = 0.31 ± 0.22 km
z = 9.67 ± 0.99 km
t = -0.03 ± 0.06 s

Question (2 min)
Test different parameters and see how standard error ($sigma$) changes, which parameter has the largest standard error?
which parameter has the minimum standard error? Why? .. note:: | Check (𝐺𝑇𝐺)−1, (𝐺𝑇𝐺) and 𝐺 values

Covariance Matrix

𝜎2
𝑚 = 𝜎2

𝑑(𝐺𝑇𝐺)−1 =

⎡⎢⎢⎣
𝜎2
𝑥𝑥 𝜎2

𝑥𝑦 𝜎2
𝑥𝑧 𝜎2

𝑥𝑡

𝜎2
𝑦𝑥 𝜎2

𝑦𝑦 𝜎2
𝑦𝑧 𝜎2

𝑦𝑡

𝜎2
𝑧𝑥 𝜎2

𝑧𝑦 𝜎2
𝑧𝑧 𝜎2

𝑧𝑡

𝜎2
𝑡𝑥 𝜎2

𝑡𝑦 𝜎2
𝑡𝑧 𝜎2

𝑡𝑡

⎤⎥⎥⎦
From the covariance matrix, we can estiamte the uncertainty(𝜎) of x,y,z,t using 𝜎2

𝑥,𝜎2
𝑦 ,𝜎2

𝑧 ,𝜎2
𝑡

matrix_show(sigma_m2,fmt='.3f')
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Principle axes
Note that off-diagonal elements of 𝜎2

𝑚 is not zero. Using xy plane as an example, it is shape could be presented by the
figure below generated. The principle axes are not along the same direction with xy axis.

angle = 30
width = 0.5
height = 0.8
ellipse = Ellipse(xy=[0,0],width=0.5,height=0.8,angle=-angle)
ellipse.set_facecolor('grey')
ellipse.set_edgecolor('black')
fig, ax = plt.subplots(subplot_kw={'aspect': 'equal'})
ax.add_artist(ellipse)

plt.xlabel("X (km)")
plt.ylabel("Y (km)")
plt.xlim([-1,1])
plt.ylim([-1,1])
plt.plot([-1,1],[0,0],'k')
plt.plot([0,0],[-1,1],'k')
plt.arrow(0,0,height/2*np.sin(np.deg2rad(angle))*0.85,height/2*np.cos(np.
→˓deg2rad(angle))*0.85,width=0.015,zorder=10)
plt.arrow(0,0,-width/2*np.cos(np.deg2rad(angle))*0.80,width/2*np.sin(np.
→˓deg2rad(angle))*0.80,width=0.015,zorder=10)
plt.plot(0.27,0,'o',color='blue',ms=8)
plt.plot(0,0.34,'o',color='red',ms=8)
plt.text(0.34,-0.1,'$\sigma_x$')
plt.text(-0.12,0.38,'$\sigma_y$')
plt.show()
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Singular Value Decomposition (SVD) could be used to find the principle axes and principle values.

𝑀 = 𝑈𝑆𝑉 𝑇

𝑆 is the ordered eigenvalues array. 𝑉 is the corresponding eigenvectors. Below demonstrate the decomposition of
errors in xy-plane.

sigma_xy2 = sigma_m2[:2,:2]
u,s,vt = np.linalg.svd(sigma_xy2)
print("Maximum eigenvalue: ",format(s[0],'.5f')," corresponding eigenvector: ",vt[0,:])
print("Minimum eigenvalue: ",format(s[-1],'.5f')," corresponding eigenvector: ",vt[-1,:])
print("The maximum/minimum eigenvalue ratio: ",format(s[0]/s[1],'.2f'))

Maximum eigenvalue: 0.05139 corresponding eigenvector: [0.35995123 0.93297112]
Minimum eigenvalue: 0.03604 corresponding eigenvector: [ 0.93297112 -0.35995123]
The maximum/minimum eigenvalue ratio: 1.43

Plot the error ellipse and stations

Note: the sigma values are small to be shown, here amplify the size by parameter size_ratio

angle = np.arctan(vt[0,0]/vt[0,1])/np.pi*180
size_ratio = 100
ellipse = Ellipse(xy=[hyc_estimate[0],hyc_estimate[1]],width=s[1]*size_ratio,
→˓height=s[0]*size_ratio,angle=-angle)
ellipse.set_facecolor('red')
ellipse.set_edgecolor('black')
fig, ax = plt.subplots(subplot_kw={'aspect': 'equal'})
ax.add_artist(ellipse)

plt.plot(stas[:,0],stas[:,1],'^',label="Station")
(continues on next page)

8.5. More Practical Case 97



CUSeisTut, Release 0.0.1

(continued from previous page)

plt.xlabel("X (km)")
plt.ylabel("Y (km)")
plt.show()

8.6 Summary

8.6.1 One layer model

In the tutorial, we introduced the grid-search method and iterative location method using the one-layer velocity model.
The advantage of one-layer is that the ray from the source to one station is a stright line, it is thus convenient to calculate
the corresponding partial derivatives. In the real earth, however, the velocity varies due to material, pressure and other
fators, the ray path is therefore a curved line, making things more complicated.
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However, the key process in finding the earthquake locations remains the same.

8.6.2 The grid search method and the iteraive method

In this tutorial, using the iterative method, we can converge the minimum error location in limited iterations with the
random initial location we set. However, in practical cases, due to the complexity of station coverage, velocity structure,
and other factors, a random initiation might lead to local minimum rather than global minimum.
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(Courtesy of https://medium.com/analytics-vidhya/journey-of-gradient-descent-from-local-to-global-c851eba3d367)
The general solution is to conduct rough grid-search first, which could avoid local minimum effectively. Then run
the iterative method from the grid search minimum.

8.6.3 Convenient functions

def iter_loc(hyc_loop,stas,dobs,V,niter=10,show=True):
"""
Do iterative earthquake location
Parameters:
| hyc_loop: hypoceter for iteration
| stas: array contains stations location
| dobs: observed travel time
Return:
| hyc_loop: earthquake location after iteration
| sigma_m2: square sigma matrix
| sigma_d: root mean square residual
"""
nobs = dobs.shape[0]
k = 0
while k < niter:

(continues on next page)
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dcal = np.zeros((nobs,1))
for i in range(dobs.shape[0]):

dx = stas[i,0]-hyc_loop[0]
dy = stas[i,1]-hyc_loop[1]
dz = stas[i,2]-hyc_loop[2]
dcal[i,0] = np.sqrt(dx**2+dy**2+dz**2)/V+hyc_loop[3]

delta_d = dobs - dcal
e2 = 0
for i in range(nobs):

e2 += delta_d[i,0]**2
if show:

print(f"Iteration {k} square error: ",format(e2,'5.2f'))

# >>>>> Build G matrix >>>>>>
G = np.zeros((nobs,4))
G[:,3]=1
for i in range(dobs.shape[0]):

for j in range(3):
denomiter = np.sqrt((hyc_loop[0]-stas[i,0])**2+(hyc_loop[1]-stas[i,

→˓1])**2+(hyc_loop[2]-stas[i,2])**2)
G[i,j]=(hyc_loop[j]-stas[i,j])/denomiter/V

# >>>>> Invert the m value >>>>
GTG = np.matmul(G.T,G)
GTG_inv = np.linalg.inv(GTG)
GTG_inv_GT = np.matmul(GTG_inv,G.T)
delta_m = np.matmul(GTG_inv_GT,delta_d)

# >>>>> Update the hypocenter loop >>>>>
hyc_loop = np.add(hyc_loop,delta_m.ravel())
k = k+1

# >>>>> End the loop if error is small >>>>>
if e2<0.0000001:

break
sigma_d = np.std(delta_d)
sigma_d2 = sigma_d**2
sigma_m2 = sigma_d2 * GTG_inv
return hyc_loop, sigma_m2, sigma_d

hyc_abs, sigma_m2, e2 = iter_loc(hyc_init,stas,dobs,Vp)

Iteration 0 square error: 49.47
Iteration 1 square error: 1.85
Iteration 2 square error: 0.03
Iteration 3 square error: 0.00
Iteration 4 square error: 0.00

def present_loc_results(hyc,sig_square=None,std_fmt='.2f'):
"""
Print earthquake location results

(continues on next page)
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Parameters:
| hyc: hypocenter
|sigma_square: squared sigma matrix
| std_fmt: format control of the output uncertainty
"""
_x = format(np.round(hyc[0],4),format("6.2f"))
_y = format(np.round(hyc[1],4),format("6.2f"))
_z = format(np.round(hyc[2],4),format("6.2f"))
_t = format(np.round(hyc[3],4),format("6.2f"))
if not isinstance(sig_square,np.ndarray):

print("x = ",_x," km")
print("x = ",_y," km")
print("z = ",_z," km")
print("t = ",_t," s")

else:
stdx = sig_square[0,0]**0.5
_stdx = format(np.round(stdx,4),std_fmt)
stdy = sig_square[1,1]**0.5
_stdy = format(np.round(stdy,4),std_fmt)
stdz = sig_square[2,2]**0.5
_stdz = format(np.round(stdz,4),std_fmt)
stdt = sig_square[3,3]**0.5
_stdt = format(np.round(stdt,4),std_fmt)
print("x = ",_x,"±",_stdx," km")
print("y = ",_y,"±",_stdy," km")
print("z = ",_z,"±",_stdz," km")
print("t = ",_t,"±",_stdt," s")

present_loc_results(hyc_abs,sigma_m2,std_fmt='.4f')

x = 0.50 ± 0.0000 km
y = 0.50 ± 0.0000 km
z = 9.45 ± 0.0000 km
t = -0.00 ± 0.0000 s

8.6.4 Play around new station dataset

stas_set2 = np.array([[-45,36,0],
[-44,30,0],
[-12,50,0],
[8,-40,0],
[-1,-11,0],
[20,-19,0],
[20,0,0],
[23,-39,0],
[35,-5,0],
[42,-27,0]])

stas = stas_set2
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8.7 Homework

1. Using the second station dataset (stats_set2), run the inversion with noise parameters (seed=100,
mu=0,sigma=0.1), plot the error ellipse and stations, could you conclude relationship between the error ellipse
and the stations coverage? Show your codes and results(30 Points)

2. In order to enhance the Z constraint, you can change the location of one station in station dataset1, what’s your
plan and why? Show your codes and results (20 points)

3. In previous example, we calculate the 𝜎2
𝑑 = 1

𝑛𝑜𝑏𝑠

∑︀𝑛𝑜𝑏𝑠
𝑖=1 (𝑑𝑖 − 𝑑)2, note it is the sum of square error di-

vided by 𝑛𝑜𝑏𝑠 (number of observations). There are scientists proposed that the calculation should be 𝜎2
𝑑 =

1
𝑛𝑜𝑏𝑠−𝑘

∑︀𝑛𝑜𝑏𝑠
𝑖=1 (𝑑𝑖 − 𝑑)2, where 𝑛𝑜𝑏𝑠 − 𝑘 is called the number of degrees of freedom, 𝑘 is the number of pa-

rameters determined by the data, in earthquake location process, 𝑘 = 4 for four paramters (x,y,z,t) are inverted.
Try to run the inversion 100 times with random noise 𝜎𝑡𝑟𝑢𝑒 = 0.1𝑠, calculate the data standard error using two
methods, conclude which one is more consistent with the input noise level. Show your codes and results (30
points)

4. What’s your comments and suggestions to this tutorial (10 points)

8.8 Tutorial source code

Download here

8.9 HYPOINVERSE Tutorial

Previous python tutorial gives intuitive familarities of the earthquake relocation process, here we further prepared a
tutorial of widely used earthquake absolute location tool, the HYPOINVERSE.

8.9.1 Introduction of HYPOINVERSE

Hypoinverse is a computer program that processes files of seismic station data for an earthquake (like p wave arrival
times and seismogram amplitudes and durations) into earthquake locations and magnitudes (Klein, 2002). It is a single
event location method.

The Hypoinverse program requires the input of station locations, seismic velocity model, and the phase data. By
assuming a trial origin time and hypocentral location for the earthquake, it improves them by iteratively minimizing
the least square error of the travel time computed from the input information.

8.9.2 Environment and example

For MacOS user, Xcode is needed to be installed, run xcode-select --install and wait for finishment.

HYPOINVERSE example
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CHAPTER

NINE

FOCAL MECHANISM

Waveforms recorded at a seismic station, W(t), compose of three components:

W(t) = S(t) * G(t) * I(t); (1)

where S(t) represents the source, G(t) stands for the Green’s functions, and I(t) is the instrument response. There-
fore, retrieving source parameters of one earthquake S(t) requires deconvolving instrument response I(t) and Green’s
functions G(t) from the actual data W(t). We generally remove instrument responses after obtaining the waveform data.
Therefore, we have the data in displacement or in velocity, u(t) = S(t) * G(t). The corresponding synthetic displacement
s(t) for a douple-couple source can be expressed as

s(t) = M0 Ai( -,,)Gi(t); (2)

where Gi are the Green’s functions, Ai are the radiation coeffcients, and is the station azimuth, M0 is scalar moment,,,
and are strike, dip, and rake, respectively. Then we perform a grid search in all possible solutions of strike, dip, and
rake to obtain the best fit by finding the minimal residual between the data and synthetics. This procedure consists
of the following three steps, (1) computing Green’s functions, (2) preparing data seismograms, and (3) deriving focal
mechanism solutions. This tutorial will mostly cover step (3).

Here we compute focal mechanism solutions using the Cut and Paste” method (CAP) [Zhu and Helmberger, 1996]. This
method decomposes seismograms and uses amplitude information in different time windows (e.g., Pnl/surface wave)
to increase the stability and resolution of focal mechanism solution. Please refer to [Zhu and Helmberger, 1996] for
details of the CAP method. The earthquake example used in the gCAP program is the 2008 Illinois Mw 5.2 earthquake.
It is a left-lateral strike-slip event based on focal mechanism solutions and aftershock locations [Yang et al., 2009].

——– Prof. Hongfeng Yang

Developed by Han CHEN.

9.1 1 Introduction

9.1.1 1.1 What is focal mechanism

To describe the geometry of a fault, Scientists assume that the fault is a planar surface across which slip occurred during
an earthquake. The focal mechanism describes the fault geometry of the seismogenic fault (e.g., strike(), dip()) and the
slip in the fault (e.g., rake()). The beach ball were the lower-hemisphere stereographic projection of the fault geometry.
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9.1.2 1.2 package required

• fk package

• Seismic Analysis Code (SAC) package

• gCAP3D package

9.2 2 Installation

9.2.1 2.1 fk

fk is a program written by Prof. Lupei ZHU for calculating the synthetic Green’s function based on a horizontally
layered velocity model. The detailed installation of fk could be find on here.

1. Files download

1 ## Download
2 $ wget http://www.eas.slu.edu/People/LZhu/downloads/fk3.3.tar
3 ## Unzip
4 $ tar -xvf fk3.3.tar
5 ## make dir "~/Src" and move the fold to "~/Src"

(continues on next page)
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(continued from previous page)

6 $ mkdir -p ~/Src/
7 $ mv fk ~/Src/

2. File modification and compilation

There are some errors in the source code of fk. Please download the file and put it into the ~/Src/fk for modifying
the Make file.

1 $ cd ~/Src/fk/
2 ## modify the Make file
3 $ patch < fk3.3-v20190618.patch
4 ## compilation
5 $ make clean
6 $ make
7 ## Modify the environment variable and add the fk path to PATH
8 $ echo 'export PATH=${HOME}/Src/fk/:${PATH}'>> ~/.bashrc
9 $ source ~/.bashrc

3. Run fk

Type fk.pl in the terminal, there will be help information if installation is succeeded

1 $ fk.pl
2 Usage: fk.pl -Mmodel/depth[/f_or_k] [-D] [-Hf1/f2] [-Nnt/dt/smth/dk/taper] [-Ppmin/pmax[/

→˓kmax]] [-Rrdep] [-SsrcType] [-Uupdn] [-Xcmd] distances ...
3 ...

9.2.2 2.2 Seismic Analysis Code (SAC)

SAC is one of the most widely used data analysis software packages in the field of natural seismology. The installation
of SAC could be found at the website.

Apply SAC source file

You will need to submit an application online to obtain the SAC package from IRIShttp://ds.iris.edu/ds/nodes/dmc/
forms/sac/

2.2.1 Installation for linux

1. Install dependent libraries

> for Ubuntu/Debian:

1 $ sudo apt update
2 $ sudo apt install libc6 libsm6 libice6 libxpm4 libx11-6
3 $ sudo apt install zlib1g libncurses5

> for CentOS/Fedora/RHEL:
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1 $ sudo yum install glibc libSM libICE libXpm libX11
2 $ sudo yum install zlib ncurses-compat-libs

2. Install binary packages

1 ## Unizp
2 $ tar -xvf sac-102.0-linux_x86_64.tar.gz
3 ## Move to installation position
4 $ sudo mv sac ~/opt

3. Configuration variable

Add the environment variables and SAC global variables in ~/.bashrc

1 $ echo 'export SACHOME=~/opt/sac'>> ~/.bashrc
2 $ echo 'export SACAUX=${SACHOME}/aux'>> ~/.bashrc
3 $ echo 'export PATH=${SACHOME}/bin:${PATH}'>> ~/.bashrc
4 $ echo 'export SAC_DISPLAY_COPYRIGHT=1'>> ~/.bashrc
5 $ echo 'export SAC_PPK_LARGE_CROSSHAIRS=1'>> ~/.bashrc
6 $ echo 'export SAC_USE_DATABASE=0'>> ~/.bashrc
7 $ source ~/.bashrc

4. Run sac

Type sac in the terminal, there will be version information if installation is succeeded

1 $ sac
2 SEISMIC ANALYSIS CODE [11/11/2 3 (Version 1 .6a)]
3 Copyright 1995 Regents of the University of California
4

5 SAC>

2.2.2 Installation for MacOS

1. Preparation

Install command line tools and X11 graphical interface related tools (XQuartzunder) MacOS

1 $ xcode-select --install
2 $ brew install --cask xquartz

2. Install binary packages

1 ## Unizp
2 $ tar -xvf sac-102.0-mac.tar.gz
3 ## Move to installation position
4 $ sudo mv sac ~/opt

3. Configuration variable

Add the environment variables and SAC global variables in ~/.zshrc

1 $ echo 'export SACHOME=~/opt/sac'>> ~/.zshrc
2 $ echo 'export SACAUX=${SACHOME}/aux'>> ~/.zshrc
3 $ echo 'export PATH=${SACHOME}/bin:${PATH}'>> ~/.zshrc

(continues on next page)
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4 $ echo 'export SAC_DISPLAY_COPYRIGHT=1'>> ~/.zshrc
5 $ echo 'export SAC_PPK_LARGE_CROSSHAIRS=1'>> ~/.zshrc
6 $ echo 'export SAC_USE_DATABASE=0'>> ~/.zshrc
7 $ source ~/.zshrc

4. Run sac

Type sac in the terminal, there will be version information if installation is succeeded

1 $ sac
2 SEISMIC ANALYSIS CODE [11/11/2 3 (Version 1 .6a)]
3 Copyright 1995 Regents of the University of California
4

5 SAC>

9.2.3 2.3 gCAP3D

gCAP is a method for inversion of focal mechanism solutions developed by Prof. Lupei Zhu. The source code of gCAP
could be found in His Home page.

The code is now open source. The installation of gCAP could be found on seisman website.

Here I integrated the file in the website and gave the modified package file for you download.

1. Download the file and unzip

1 ## Download
2 ## Unizp
3 $ tar -xvf gCAP3D.1.0.Cuseistut.tar

2. Download supplementary file and unzip

Refer to the seisman website above to download gcap_utils.tar.gz, unzip and put all files into the gCAP3D directory.

3. Install binary packages

1 ## Move to installation position
2 $ sudo mv gCAP3D ~/Src
3 ## change dir to gCAP3D
4 $ cd ~/Src/gCAP3D
5 ## compilation
6 $ make clean
7 $ make

4. Configuration variable

Add the environment variables and SAC global variables in ~/.bashrc

1 $ echo 'export PATH=~/Src/gcap:${PATH}'>> ~/.bashrc
2 $ source ~/.bashrc

5. Modify directory

Open cap3D.pl, change the directory on Line 17 from ‘~/Src/gCAP3D/cap_plt.pl’ to ‘{your home direc-
tory}/Src/gCAP3D/cap_plt.pl’
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6. Run gCAP3D

Type cap3D.pl in the terminal, there will be version information if installation is succeeded

1 $ gCAP3D.pl
2 ===== CAP seismic source tensor inversion using seismic waveforms ====
3 Ref: Zhu and Helmberger, 1996, BSSA 86, 1645-1641.
4 Zhu and Ben-Zion, 2 3, GJI, submitted.
5 ...

9.3 3 Data processing

Tip: The steps of focal mechanism inversion using gCAP3D

1. Calculating the Green’s function

2. Remove the instrument response (PZ or RESP file) to get the real ground motion (requiring response files; find
the details in sac manual).

3. Rotate the NEZ components to RTZ direction (ps, remember to remove the original NEZ data in the event folder).
An introduction to these two coordinate systems can be found at this web

4. Transform the data into the unit of cm/s by multiplying 1e-7 (default unit in SAC data is nm), which is the default
unit in CAP.

5. Set the onset time of the event as the reference time (the zero point in the time series). Find the details in sac
manual.

6. Pick the p arrival time and write the time in t1 marker, (for the noisy data, band pass filter can be applied to pick
the p arrival more accurately.) Remember that the bandpass filtered data should NOT be saved in the folder. All
the sac file in the folder will be used in waveform inversion.

7. Remember to remove the waveform data from the folder whose P arrival is too dim to be seen.

8. Resample the data to that the same as the Green’s function

9. Set up the “info.eve” file under each event folder. It is a five-column file, of which the format is: “o-marker evla
evlo evdp mag”.

10. To run CAP:

(1) Input command: make ${event_name}/weight.dat; and then write the p arrival time – t1 into the eighth
column of “weight.dat”;

(2) Input command: make ${event_name}/mt.best to start the waveform inversion process.

11. check the uncertainty

Note: Note that the unit of displacement data obtained by transferring the PZ file is m; the default unit of SAC is nm,
so it must be multiplied by 1e9 to convert to the default unit of SAC.
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9.3.1 3.1 Green’s function calculation

The first step of runing gCAP is building a Green’s function library by using fk package. An velocity model file (GD.vel)
is need for the calculation. here is the velocity model used in this tutorial. The default setting of gCAP puts the Green’s
function library under ~/data/models/Glib

Tip: There are two types of velocity model that could be used in fk, with the third column is the Vs or the vp/vs ratio.
-Kmodel/depth/k, should be used while the 3rd column is vp/vs ratio (vp). The -S parameter controls the source
type. -S: 0=explosion; 1=single force; 2=double couple (2).

1 ## mkdir the Green's function library directory
2 $ mkdir ~/data
3 $ mkdir ~/data/models
4 $ mkdir ~/data/models/Glib
5 ## move to Green's function library directory
6 $ cd ~/data/models/Glib
7 ## build a directory for velocity model GD
8 $ mkdir GD
9 $ cd GD

10 ## cp GD.vel to GD directoty, please replace the '/path/to/fk/GD.vel' to the real path␣
→˓in your system

11 $ cp /path/to/fk/GD.vel .
12 ## calculate the Green's function library using fk
13 $ fk.pl -MGD.vel/15/k -N512/0.2 -S2 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85␣

→˓90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195␣
→˓200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300␣
→˓305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405␣
→˓410 415

14 $ fk.pl -MGD.vel/15/k -N512/0.2 -S0 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85␣
→˓90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195␣
→˓200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300␣
→˓305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405␣
→˓410 415

9.3.2 3.2 Sac file preparation

The sac file preparation could be done by using SAC software or other softwares, such as the Obspy. Here we briefly
introduce the steps while using SAC. The details of commands used in this chapater could be found in the sac manual.

1. Remove the instrument response

> Use PZ file:

1 ## Merge PZ files of all stations into the same file
2 $ cat SAC_PZs_* >> SAC.PZs
3 ## remove the instrument response by command: transfer
4 $ sac
5 SAC> r *.SAC
6 ## When going to the instrument response, try to choose a wider frequency band
7 SAC> trans from pol s SAC.PZs to none freq 0.004 0.007 40 45
8 SAC> mul 1.0e9

(continues on next page)
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9 SAC> w over
10 SAC> q

> Use RESP file:

1 ## Merge RESP files of all stations into the same file
2 $ cat RESP.*.*.*.* >> RESP.ALL
3 ## remove the instrument response by command: transfer
4 $ sac
5 SAC> r *.SAC
6 ## When going to the instrument response, try to choose a wider frequency band
7 SAC> trans from evalresp fname RESP.ALL to none freq 0.004 0.007 40 45
8 SAC> w over
9 SAC> q

2. Rotate the NEZ components to RTZ direction

1 $ sac
2 SAC> r ./example.n ./example.e
3 SAC> lh cmpinc cmpaz
4 FILE: ./example.n - 1
5 --------------
6 cmpinc = 9.000000e+
7 cmpaz = 0.000000e+00
8 FILE: ./example.e - 2
9 --------------

10 cmpinc = 9.000000e+
11 cmpaz = 9.000000e+
12 ## Rotate to Great Circle Path
13 SAC> rotate to gcp
14 SAC> lh cmpinc cmpaz
15 FILE: ./example.n - 1
16 --------------
17 cmpinc = 9.000000e+
18 cmpaz = 2.440466e+
19 FILE: ./example.e - 2
20 --------------
21 cmpinc = 9.000000e+
22 cmpaz = 1.144047e+02
23 ## Save as R component and T component
24 SAC> w example.r example.t
25 SAC> q

3. Resampling the sac file

1 SAC> r example.SAC
2 SAC> lh delta npts
3

4 delta = 1.000000e-02
5 npts = 1000
6 ## change the sampling rate to 0.005
7 SAC> interp delta 0.005
8 SAC> lh

(continues on next page)
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9

10 delta = 5.000000e-03
11 npts = 1999
12 SAC> q

4. Mark the P and S arrivels

The arrivels could be labeled by using SAC by using ppk command as well. please refer to the sac manual).

9.3.3 3.3 Focal mechanism inversion

After the sac files prepared, we could start to run the gCAP inversion. here we provided the SAC files of the 01/04/2020
Offshore Pearl River Delta earthquake [CHEN et.al., 2021] for you download. Please download it the unzip it and them
change your current directory to 01-04-2020-earthquake.

1 $ cd ./01-04-2020-earthquake

1. Make weight.dat file

1 #### please copy the following command to a bash script and then run the bash file.
2

3 #!/bin/bash
4

5 dir=20200104225537
6 cd $dir
7 pwd
8 rm temp
9 for sac in *z

10 do
11 sta=$(echo $sac | awk -F "." '{print $1}')
12 dist1=$(saclst dist f $sac | awk '{print $2}')
13 dist_c=$(echo $dist1 | awk '{printf ("%d\n",$1/5+0.5)}')
14 dist=$(echo ""$dist_c"*5" |bc)
15 P=$(saclst a f $sac | awk '{print $2}')
16 #echo $dist1 $dist
17 printf "%-10s %03d %-1s %-1s %-1s %-1s %-1s %3.1f %-1s\n" $sta $dist "1" "1" "1" "1

→˓" "1" $P "0" >> temp
18 done
19 cat temp | sort -n -k2 > weight.dat

The generated file as follows

1 $ cat weight.dat
2 $ HKPS 035 1 1 1 1 1 7.2 0
3 ZHH 035 1 1 1 1 1 7.2 0
4 HKOC 040 1 1 1 1 1 8.3 0
5 SZN 060 1 1 1 1 1 10.3 0
6 ZHS 065 1 1 1 1 1 11.8 0
7 TIS 100 1 1 1 1 1 18.0 0
8 XNH 100 1 1 1 1 1 17.1 0
9 SCD 115 1 1 1 1 1 19.4 0

(continues on next page)
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10 HUZ 140 1 1 1 1 1 22.7 0
11 HUD 170 1 1 1 1 1 26.8 0
12 ZHQ 180 1 1 1 1 1 27.9 0
13 HYJ 195 1 1 1 1 1 30.1 0
14 LTK 195 1 1 1 1 1 29.6 0
15 XFJ 200 1 1 1 1 1 29.8 0
16 YGJ 200 1 1 1 1 1 30.0 0
17 XIG 205 1 1 1 1 1 31.1 0
18 ZIJ 225 1 1 1 1 1 32.9 0
19 YND 230 1 1 1 1 1 33.5 0
20 LIP 260 1 1 1 1 1 37.1 0
21 HUJ 270 1 1 1 1 1 38.9 0
22 SHG 310 1 1 1 1 1 42.9 0

Tip: The weight file controls the components of each station that will be used in the inversion. if the number is set as
0, the component will be excluded in the inversion.

Station Azimuth Pz Pr Sz Sr Sh P-arrival time

2. Run the inversion

After generate the weight.dat file, please change your working direcroty to 01-04-2020-earthquake

1 $ cd ../

1 #### please copy the following command to a bash script and then run the bash file.
2

3 #!/bib/bash
4

5 ## set the velocity model
6 model=hn
7 ## set the target event
8 event=20200104225537
9 ## set the event magnitude

10 mag=3.5
11

12 ## loop the inversion for variou focal depth
13 for h in 08 09 10 11 12 13 14 15 100
14 do
15 cap3D.pl -H0.01 -P180000 -S2/5/0 -T20/50 -D1/1/0.5 -C0.05/0.2/0.03/0.1 -W1 -J0/0.01/

→˓0/0.01 -X10 -M$model"_"$h $event;
16 done
17

18 ## obtained the inversion result and plot figure
19 grep -h Event $event/$model_*.out > junk_$model.out
20 ./depth.pl junk_$model.out $event > junk_$model.ps

Note: The key paramters of cap3D.pl are as following:

-H the delta (1/samping rate) of the date

-S max. time shifts in sec for Pnl and surface waves (1/) and tie between SH shift and SV shift:
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tie=0 shift SV and SH independently, tie=0.5 force the same shift for SH and SV (0.5).

-T max. time window lengths for Pnl and surface waves (35/70).

-C filters for Pnl and surface waves, specified by the corner frequencies of the band-pass filter. (0.02/0.2/0.02/0.1).

-W use displacement for inversion; 1=> data in velocity; 2=> data in disp (0).

The inversion should be conducted multiple times with various parameters to achieve robust inversion result.

9.3.4 3.3 Uncertainty analysis

The uncertainty of the CAP inversion result can be estimated using a bootstrapping inversion method (Tichelaar and
Ruff, 1989), in which stations were randomly selected from the station pool (21 stations in total), allowing multiple
sampling.

1 #### please copy the following command to a bash script and then run the bash file.
2

3 #!/bib/bash
4

5 model=hn
6 event=20200104225537
7 mag=3.5

(continues on next page)
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8

9 ##making bootstrapping inversiong weiht.dat file by randomly choose stations from␣
→˓original weight.dat file. Extra weight were added for repeated stations.

10

11 ori=./weight1.dat
12

13 for i in `seq 1 1000`
14 do
15 echo "---------------$i-----------------"
16 cd 20200104225537
17 out=weight_test.dat
18 rm $out
19 rm temp
20 for j in `seq 1 21`
21 do
22 shuf -n1 $ori >> temp
23 done
24 cat temp |sort -n -k2 | uniq > temp2
25 ## give weight for each station according to the times it was sampled
26 for sta in `awk '{print $1}' temp2`
27 do
28 count=$(grep $sta temp | wc -l)
29 grep $sta temp |awk 'NR==1 {print $1,$2,'$count'*$3,'$count'*$4,'$count'*$5,'

→˓$count'*$6,'$count'*$7,$8,$9}' >> $out
30

31 done
32

33 echo $out
34 cd ..
35

36

37 for h in 08 09 10 11 12 13 14 15;
38 do
39 cap3D.pl -H0.01 -P180000 -S2/5/0 -T20/50 -D1/1/0.5 -C0.05/0.2/0.03/0.1 -W1 -X10␣

→˓-M$model"_"$h -Zweight_test.dat -R0/360/0/90/-90/90 $event;
40

41 done
42

43

44 grep -h Event $event/"$model"_*.out > junk_"$model"_"$i".out
45 ./depth.pl junk_"$model"_"$i".out $event > junk_"$model"_"$i".ps
46

47 done

> plot bootstrapping results:

1 #### please copy the following command to a bash script and then run the bash file.
2

3 #!/bin/bash
4

5 out_ps=focal.ps
6 file=hn_10.lst

(continues on next page)
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7

8 cat *.out > $file
9 gmt psbasemap -JM18c -R0/18/0/18 -Bxa2f1 -Bya2f1 -K > $out_ps

10 rm temp ./SDR.txt
11

12 ## plot the inversion results of each bootstrapping inversion
13 while read line
14 do
15 echo $line
16 strike=$(echo $line |awk '{print $6}')
17 dip=$(echo $line |awk '{print $7}')
18 if [ $dip -eq 90 ]
19 then
20 dip=89.99
21 else
22 dip=$dip
23 fi
24 rake=$(echo $line |awk '{print $8}')
25 echo $strike $dip $rake >> ./SDR.txt
26 echo "9 9 10 $strike $dip $rake 5 0 0" > temp
27 gmt psmeca temp -J -R -Sa17c -Fa/0.1c/s -Fered -Fgblue -T0/0.01p,gray -L0.01p,black -

→˓K -O >> $out_ps
28

29 done < $file
30

31

32 ## plot the initial inversion result
33 echo "9 9 10 168 79 2 5 0 0" > temp
34 gmt psmeca temp -J -R -Sa17c -Fa/0.1c/s -Fered -Fgblue -T0/0.01p,red -L0.01p,black -K -O␣

→˓>> $out_ps

> plot the histogram
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1 #### please copy the following command to a bash script and then run the bash file.
2

3 #!bin/bash
4

5 file=hn_10.lst
6 ps=hist_srtike_dip_rake.ps
7 cat $file |awk '{print $6}' |gmt pshistogram -R160/180/0/50 -JX5c/10c -Z1 -Bxa5f1+l

→˓"Strike(degree)" -Bya10f2+l"Frequency(%)" -BWSne -L0.1p -Ggray -W1+b -K > $ps
8 cat $file |awk '{print $7}' |gmt pshistogram -R70/90/0/50 -JX5c/10c -Z1 -Bxa5f1+l

→˓"Dip(degree)" -Bya10f2+l"Frequency(%)" -BWSne -L0.1p -Ggray -W1+b -K -O -X7c>> $ps
9 cat $file |awk '{print $8}' |gmt pshistogram -R-10/10/0/50 -JX5c/10c -Z1 -Bxa5f1+l

→˓"Rake(degree)" -Bya10f2+l"Frequency(%)" -BWSne -L0.1p -Ggray -W1+b -K -O -X7c>> $ps
10

11 # plot sub-basemap
12

13 gmt set FONT_ANNOT_PRIMARY +16p
14

15 R=0/29.7/0/21
16 J=x1/1
17 B=a1g1
18 #gmt set MAP_FRAME_TYPE=inside MAP_GRID_PEN_PRIMARY=0p,red,.
19 #gmt psbasemap -R$R -J$J -B$B -BWSEN -K -O -Xf0c -Yf0c >> $ps
20

21 echo "1.3 12.5 (a)" |gmt pstext -R$R -J$J -Xf0c -Yf0c -K -O >> $ps
22 echo "8.3 12.5 (b)" |gmt pstext -R$R -J$J -Xf0c -Yf0c -K -O >> $ps
23 echo "15.3 12.5 (c)" |gmt pstext -R$R -J$J -Xf0c -Yf0c -K -O >> $ps
24

25 gmt ps2raster $ps -A -P -Tf
26

27 rm gmt.conf gmt.history

> calculate the uncertaities:

1 cat SDR.txt |awk '{print $1}' | awk '{x[NR]=$0; s+=$0; n++} END{a=s/n; for (i in x){ss␣
→˓+= (x[i]-a)^2} sd = sqrt(ss/n); print "SD of strike = "sd}'

2

3 cat SDR.txt |awk '{print $2}' | awk '{x[NR]=$0; s+=$0; n++} END{a=s/n; for (i in x){ss␣
→˓+= (x[i]-a)^2} sd = sqrt(ss/n); print "SD of dip = "sd}'

4

5 cat SDR.txt |awk '{print $3}' | awk '{x[NR]=$0; s+=$0; n++} END{a=s/n; for (i in x){ss␣
→˓+= (x[i]-a)^2} sd = sqrt(ss/n); print "SD of rake = "sd}'
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CHAPTER

TEN

EARTHQUAKE TRANSFORMER TUTORIAL

10.1 Brief introduction

10.1.1 Deep learning model for automatic detection

The neural network was first applied in seismology to pick arrival phases since 2006. The algorithm of using machine
learning in seismology is to build a model and train it with large sets of well - labeled data. After training, the model
can predict from a given sets of input which means it can detect the P - and S - waves automatically. We can also obtain
the probability of the results so to evaluate the performance.

There are numerous architecture of deep learning model. In seismology, Convolutional Neural Network (CNN) is
commonly used for classifying the features.

By setting up a robust automatic system, we can enhance the accuracy and efficiency of the earthquake detection.

10.1.2 What is Earthquake Transformer (EQT)

Earthquake Transformer (EQT) is one of the deep learning model for earthquake detection and phase picking.

You can refer the architecture of EQT here.

By using EQT, we can detect the earthquake phases (P & S) automatically. The model has been trained on global
seismic data so we can simply apply it in different sites.

10.1.3 How to install EQT

Note:
It’s strongly recommended to install ObsPy via conda.
We here assume you have already installed conda on your computer after finishing the previous GMT tutorial.
If not, please first install it (suggest installation of miniconda).

Open your terminal and run the following commands.

$ conda create --name eat python=3.7
$ conda activate eat
$ conda install -c smousavi05 eqtransformer
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Warning: Exclude $ sign and start without whitespace!

In case if you cannot install EQT using conda, you can try:

$ pip install git+https://github.com/smousavi05/EQTransformer

10.1.4 Contents of this tutorial

In this tutorial, we will cover:

1. Make the station list and Download the data

2. Detect earthquakes

3. Visualise the result

4. Phase association

Developed by LAU Tsz Lam Zoe.

10.2 1 Make the station list and Download the data

10.2.1 1.1 Constrain the area and the time of interest

It is better for us to constrain a small area of interest, otherwise the downloading time will be extended.

We will use the example from the ObsPy tutorial. But, we will download the continuous data using EQT this time.

# Area of interest

# latitude
lat_min = -8
lat_max = -9

# longitude
lon_min = 122.5
lon_max = 124.5

# Time of interest
# You can try with 1 day data first
start_time = "2015-08-11 00:00:00.00"
end_time = "2015-08-12 00:00:00.00"
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10.2.2 1.2 Make Station list

Station list contains the information of the stations and it will help to find the waveforms by stations during the detection.

import os
json_basepath = os.path.join(os.getcwd(),"json/station_list.json")

from EQTransformer.utils.downloader import makeStationList
makeStationList(json_path=json_basepath, client_list=["IRIS"], min_lat=lat_min, max_
→˓lat=lat_max, min_lon=lon_min, max_lon=lon_max, start_time=start_time, end_time=end_
→˓time, channel_list=["HH[ZNE]", "HH[Z21]", "BH[ZNE]"])

os.path.join combine one or more path names into a single path.

makeStationList make the station list that is based on your interest and applicable for the earthquake transformer.

Here is the example of the station list: station_list.json.

It is a dictionary containing the station name, network, channels and coordinates.

Note: You can also customise the station list by creating your own dictionary according to the format.

10.2.3 1.3 Download Data

We can download the waveform data directly from the EQT. The file names of the downloaded data must applicable to
EQT.

from EQTransformer.utils.downloader import downloadMseeds

# We have already constrained the area and time of interest

downloadMseeds(client_list=["IRIS"], stations_json=json_basepath, output_dir="mseed_data
→˓", min_lat=lat_min, max_lat=lat_max, min_lon=-lon_min, max_lon=lon_max, start_
→˓time=start_time, end_time=end_time, chunk_size=1, channel_list=[], n_processor=2)

downloadMseeds download the waveform data according to your station list and your interest.

Make sure you have already made the station list before using this function. The data downloaded will be in mseed
format and saved into a directory called mseed_data.

Note: If you have your own data, then you can skip this procedure.
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10.3 2 Detect Earthquake

The idea of detecting earthquake is to input the waveform data and station list, then the model will classify the P - and
S - wave together with their corresponding arrival time and save it according to the stations.

There are many alternative ways to undergo the detection. We here introduce one of the method which is using the
preprocessed data (hdf5 files).

The hdf5 file can handle large datasets by slicing data and shorten the time of reading large chunk of individual wave-
forms.

from EQTransformer.utils.hdf5_maker import preprocessor

preprocessor(preproc_dir="preproc", mseed_dir='mseed_data', stations_json='json/station_
→˓list.json', overlap=0.3, n_processor=2)

preprocessor prepare the data by slicing it into 1-min long Numpy array in hdf5 file and generate a CSV that contains
the list of trace it the hdf5 file.

Note: Make sure you have preprocess the data using preprocessor before predictor.

After preprocessor , there will be a new directory name mseed_data_processed_hdf5. It will be used in the next
step.

from EQTransformer.core.predictor import predictor

predictor(input_dir= 'mseed_data_processed_hdfs', input_model='EqT_model.h5', output_dir=
→˓'detections', detection_threshold=0.3, P_threshold=0.1, S_threshold=0.1, number_of_
→˓plots=100, plot_mode='time')

predictor predicts the earthquakes by naming the directories of input, output and the model.

Note: You can set up the detection according to different settings of your area.

The threshold of the detection should be adjusted with the ratio of false detection depending on the data noise level.
For example, if the noise level is high in the studied region, then the threshold value has to be high in order to reduce
the false detection.

Here is the output files after the detection:

X_report.txt the report contains information on input and final results (including total number of events that are
detected) X_report.txt.

X_prediction_results.csv the file contains detection and picking results X_prediction_results.csv.

figures a directory saves all the plots of the detected events.

Here is one of the output figures of the detected event:
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In this figure, we can see the probability and the arrival times of P - and S - waves.

You can refer the same event in the ObsPy tutorial!

10.4 3 Visualise the results

Histogram

from EQTransformer.utils.plot import plot_detections

plot_detections(input_dir="detections", input_json="station_list.json", plot_type=
→˓'station_map', marker_size=50)

plot_detections generate map plot to visualise the number of detections over stations.
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Note: The plot here simply show the distribution of the stations and the number of detections accordingly. You can
use other method to plot in order the show a detailed map plot (i.e. GMT).

10.5 4 Phase association

Phase association is used to review the detected seismic phases and group them together with the same origin of
earthquake.

After the phase picking process, you can undergo a simple association procedure. This can help you to proceed to the
next step (relocation) easily.

from EQTransformer.utils.associator import run_associator

run_associator(input_dir='detections', start_time="2015-08-11 00:00:00.00", end_time=
→˓"2015-08-12 00:00:00.00", moving_window=15, pair_n=3)

run_associator perform simple and fast association for further relocation.

Output files:

1. Y2000.phs results in HypoInverse format -> HypoInverse Y2000.phs

2. associations.xml ObsPy QuakeML format -> conventional location algorithms (i.e. NonLinLoc)
associations.xml

3. traceName_dic.json dictionary saves the trace names for source waveforms of the detected events
-> later access traceName_dic.json
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Note: Relocation is needed for accurate location.

10.5. 4 Phase association 127
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CHAPTER

ELEVEN

DOUBLE-DIFFERENCE EARTHQUAKE RELOCATION

11.1 Introduction

Double-difference earthquake relocation algorithm was developed to improve the location accuracy in the presence of
measurement uncertainties when we locate earthquakes in the previous tutorial. It is based on the iterative least-square
method, using the time difference between observed and predicted phase arrivals for event pairs recorded by a common
station, some uncertainties can be canceled to derive high-accuracy hypocenter locations over large distance. Figure
below shows a comparison of ~10,000 earthquake locations (left panel) and double-difference locations (right panel)
during the 1997 seismic crisis in the Long Valley caldera (Waldhauser, 2001).

In this tutorial, we’ll go through the powerful earthquake double-difference location method. To better convey the key
conception of the method, we simplify the model to avoid it runs too complicated to be understood. We’ll use:

1. one-layer homogeneous velocity model to get rid of complicated ray-tracing.

2. 2-D X-Z plane rather than 3-D X-Y-Z to decrease complexity

3. P arrivals only

After this tutorial, besides the understanding of key concepts in Double-Difference location, you will also find that
model expands from 2-D to 3-D, from one-layer to multi-layers, from P to P&S arrivals, the key processing remains
the same.

Note:
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You are strongly encouraged to play around codes in this tutorial and introduce to others, you will find your
understanding will be enhanced dramatically during the process.

11.1.1 Contents of this tutorial

1. Initiation process

2. Double difference method

3. Iterative double-difference method

Authors: ZI Jinping, SONG Zilin, Earth Science Sytem Program, CUHK.

Testers, XIA Zhuoxuan, Sun Zhangyu, Earth Science Sytem Program, CUHK.

11.2 Initiation

11.2.1 Preparation for Environment

import numpy as np
import time
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from scipy.sparse.linalg import lsqr
from scipy.sparse import csc_matrix

Note:
It is important to define functions below first.

def iter_loc(hyc_loop,stas,d,V,niter=10):
"""
Iterative aboslute earthquake location using least-square method,
refer to absolute earthquake location python tutorial.
Parameters:
| hyc_loop: hypocenter for iteration
| stas: array containing station information
| d: the observed arrival time
| V: the velocity
| niter: maximum number of iteration
"""
k = 0
while k <= niter:

dcal = np.zeros((d.shape[0],1))
for i in range(d.shape[0]):

dx = stas[i,0]-hyc_loop[0]
dz = stas[i,1]-hyc_loop[1]
dcal[i,0] = np.sqrt(dx**2+dz**2)/V+hyc_loop[2]

delta_d = d - dcal
e2 = 0

(continues on next page)
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(continued from previous page)

for i in range(delta_d.shape[0]):
e2 += delta_d[i,0]**2

print(f"Iteration {format(k,'2d')} square error: ",format(e2,'13.8f'))

# >>>>> Build G matrix >>>>>>
G = np.zeros((d.shape[0],3))
G[:,2]=1
for i in range(d.shape[0]):

for j in range(2):
denomiter = np.sqrt((hyc_loop[0]-stas[i,0])**2+(hyc_loop[1]-stas[i,

→˓1])**2)
G[i,j]=(hyc_loop[j]-stas[i,j])/denomiter/V

# >>>>> Invert the m value >>>>
GTG = np.matmul(G.T,G)
GTG_inv = np.linalg.inv(GTG)
GTG_inv_GT = np.matmul(GTG_inv,G.T)
delta_m = np.matmul(GTG_inv_GT,delta_d)

# >>>>> Update the hypocenter loop >>>>>
hyc_loop = np.add(hyc_loop,delta_m.ravel())
k = k+1

# >>>>> End the loop if error is small >>>>>
if e2<0.00000001:

break

sigma_d = np.std(delta_d)
var = sigma_d**2*(d.shape[0])/(d.shape[0]-4)
sigma_m2 = var * GTG_inv
return hyc_loop, sigma_m2

def present_loc_results(hyc,sig_square=None,std_fmt='.2f'):
"""
Print earthquake location results, refer to absolute earthquake location
for reference
Parameters:
| hyc: hypocenter
|sig_square: squared convariance
"""
_x = format(np.round(hyc[0],4),format("6.2f"))
_z = format(np.round(hyc[1],4),format("6.2f"))
_t = format(np.round(hyc[2],4),format("6.2f"))
if not isinstance(sig_square,np.ndarray):

print("x = ",_x," km")
print("z = ",_z," km")
print("t = ",_t," s")

else:
stdx = sig_square[0,0]**0.5
_stdx = format(np.round(stdx,4),std_fmt)
stdz = sig_square[1,1]**0.5
_stdz = format(np.round(stdz,4),std_fmt)

(continues on next page)
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(continued from previous page)

stdt = sig_square[2,2]**0.5
_stdt = format(np.round(stdt,4),std_fmt)
print("x = ",_x,"±",_stdx," km")
print("z = ",_z,"±",_stdz," km")
print("t = ",_t,"±",_stdt," s")

def matrix_show(*args,**kwargs):
"""
Show matrix values in grids shape
Parameters:cmap="cool",gridsize=0.6,fmt='.2f',label_data=True
"""
ws = []
H = 0
str_count = 0
ndarr_count = 0
new_args = []
for arg in args:

if isinstance(arg,str):
new_args.append(arg)
continue

if isinstance(arg,list):
arg = np.array(arg)

if len(arg.shape)>2:
raise Exception("Only accept 2D array")

if len(arg.shape) == 1:
n = arg.shape[0]
tmp = np.zeros((n,1))
tmp[:,0] = arg.ravel()
arg = tmp

h,w = arg.shape
if h>H:

H=h
ws.append(w)
new_args.append(arg)
ndarr_count += 1

W = np.sum(ws)+len(ws) # text+matrix+text+...+matrix+text
if W<0:

raise Exception("No matrix provided!")

fmt = '.2f'
grid_size = 0.6
cmap = 'cool'
label_data = True
for arg in kwargs:

if arg == "fmt":
fmt = kwargs[arg]

if arg == 'grid_size':
grid_size = kwargs[arg]

if arg == 'cmap':
cmap = kwargs[arg]

if arg == 'label_data':
label_data = kwargs[arg]

(continues on next page)
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(continued from previous page)

fig = plt.figure(figsize=(W*grid_size,H*grid_size))
gs = fig.add_gridspec(nrows=H,ncols=W)

wloop = 0
matrix_id = 0
for arg in new_args:

if isinstance(arg,str):
ax = fig.add_subplot(gs[0:H,wloop-1:wloop])
ax.axis("off")
ax.set_xlim(0,1)
ax.set_ylim(0,H)
ax.text(0.5,H/2,arg,horizontalalignment='center',verticalalignment='center')

if isinstance(arg,np.ndarray):
h,w = arg.shape
hlow = int(np.round((H-h+0.01)/2)) # Find the height grid range
hhigh = hlow+h
wlow = wloop
whigh = wlow+w

# print("H: ",H,hlow,hhigh,"; W ",W,wlow,whigh)
ax = fig.add_subplot(gs[hlow:hhigh,wlow:whigh])

plt.pcolormesh(arg,cmap=cmap)
for i in range(1,w):

plt.axvline(i,color='k',linewidth=0.5)
for j in range(1,h):

plt.axhline(j,color='k',linewidth=0.5)
if label_data:

for i in range(h):
for j in range(w):

plt.text(j+0.5,i+0.5,format(arg[i,j],fmt),
horizontalalignment='center',
verticalalignment='center')

plt.xlim(0,w)
plt.ylim([h,0])
plt.xticks([])
plt.yticks([])
wloop+=w+1
matrix_id+=1

plt.show()

11.2.2 Basic parameters

Set up station array, earthquake true location, wave-velocity and generate synthetic arrival time.

stas =np.array([[-20,0],[-14,0],[-8,0],[0,0],[8,0],[14,0],[20,0]]) # Station
stas =np.array([[-19,0],[-13,0],[-7,0],[0,0],[8,0],[14,0],[20,0]]) # Station
hyc1_true = np.array([-1,8,0])
Vtrue = 5
nsta = stas.shape[0]
dobs1 = np.zeros((nsta,1))
for i in range(dobs1.shape[0]):

(continues on next page)
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dx = stas[i,0]-hyc1_true[0]
dz = stas[i,1]-hyc1_true[1]
dobs1[i,0] = np.sqrt(dx**2+dz**2)/Vtrue+hyc1_true[2]

# Plot event, stations, and rays
fig,ax= plt.subplots(1,1)
plt.plot(hyc1_true[0],hyc1_true[1],'r*',ms=10,label='Event 1')
plt.plot(stas[:,0],stas[:,1],'b^',ms=10,label="Station")
for sta in stas:

plt.plot([hyc1_true[0],sta[0]],[hyc1_true[1],sta[1]],'k-')

# Add grey background
nodes = [[-25,10],[25,10],[25,0],[-25,0]]
p = Polygon(nodes,facecolor='lightgrey')
for i in range(stas.shape[0]):

sta = stas[i]
plt.text(sta[0]-3,sta[1]-0.5,'Sta '+str(i))

plt.gca().add_patch(p)

# Set up plot elements
plt.xlim([-25,25])
plt.ylim([10,-2])
plt.xlabel("X (km)")
plt.ylabel("Depth (km)")
plt.title("Model")
plt.legend();
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11.3 Absolute earthquake location

11.3.1 Initial location

The station which records the earliest waveform is closest to the hypocenter, so it is reasonable to start iteration:

1. The same x and y with the closest station;

2. Initial depth at 5 km;

3. Initial origin time 1 sec before the earliest arrival;

idx = np.argmin(dobs1) # The index of station
dmin = np.min(dobs1) # The minimum arrival time

hyc1_init = np.zeros(3); # Init array
hyc1_init[0] = stas[idx,0]; # Set the same x,y with station
hyc1_init[1] = 5; # Set initial depth 5 km
hyc1_init[2] = dmin-1; # Set initial event time 1s earlier than arrival
print("Initial trial parameters ","x: ",hyc1_init[0],"km; ","z: ",hyc1_init[1],"km; ",
→˓"t: ", format(hyc1_init[2],'.4f')+" s")
hyc1_loop = hyc1_init.copy()

Initial trial parameters x: 0.0 km; z: 5.0 km; t: 0.6125 s

We can also define a function to get the initial location

def get_init_loc(dobs,stas,depth=5,gap_time=1):
"""
Get initial earthquake location
"""
dmin = np.min(dobs) # The minimum arrival time
idx = np.argmin(dobs) # The index of observation

hyc_init = np.zeros(3); # Init array
hyc_init[0] = stas[idx,0]; # Set the same x,y with station
hyc_init[1] = depth; # Set initial depth 5 km
hyc_init[2] = dmin-gap_time; # Set initial event time 1s earlier than arrival
print("Initial trial parameters ","x: ",hyc_init[0],"km; ","z: ",hyc_init[1],"km; ",

→˓"t: ", format(hyc_init[2],'.4f')+" s")
return hyc_init

hyc1_init = get_init_loc(dobs1,stas)

Initial trial parameters x: 0.0 km; z: 5.0 km; t: 0.6125 s

Note:
For the knowledge of iterative location, please refer to the tutorial Earthquake Absolute Location.

hyc1_abs, sigma_m2 = iter_loc(hyc1_loop,stas,dobs1,Vtrue)
present_loc_results(hyc1_abs,sigma_m2,std_fmt='.4f')
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Iteration 0 square error: 0.83833287
Iteration 1 square error: 0.01411773
Iteration 2 square error: 0.00000020
Iteration 3 square error: 0.00000000
x = -1.00 ± 0.0000 km
z = 8.00 ± 0.0000 km
t = 0.00 ± 0.0000 s

11.3.2 Velocity Error

In the calculation above, we use the true velocity (Vtrue) to conduct the inversion. However, in reality, the velocity we
measure is more or less different from the true velocity, thus leading to some bias.

Note:
Try to use other velocity values to conduct the inversion and check the results, what features do you find?

Vp = 4.8
hyc1_abs, sigma_m2 = iter_loc(hyc1_init,stas,dobs1,Vp)
present_loc_results(hyc1_abs,sigma_m2,std_fmt='.4f')
print("True location (hyc1_true) ","x: ",hyc1_true[0],"km; ","z: ",hyc1_true[1],"km; ",
→˓"t: ", format(hyc1_true[2],'.4f')+" s")

Note:
For the knowledge of iteration location, please refer to the absolute earthquake location tutorial

Iteration 0 square error: 1.44386729
Iteration 1 square error: 0.03284725
Iteration 2 square error: 0.00078154
Iteration 3 square error: 0.00077835
Iteration 4 square error: 0.00077835
Iteration 5 square error: 0.00077835
Iteration 6 square error: 0.00077835
Iteration 7 square error: 0.00077835
Iteration 8 square error: 0.00077835
Iteration 9 square error: 0.00077835
Iteration 10 square error: 0.00077835
x = -0.98 ± 0.0398 km
z = 8.90 ± 0.1464 km
t = -0.24 ± 0.0204 s
True location (hyc1_true) x: -1 km; z: 8 km; t: 0.0000 s
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11.3.3 Station Delay

In near surface, the material velocity where stations are located might vary and lead to influence on the travel time, we
call it Station delay. The River sediments are generally composed by not fully consolidated materials, their velocities
are therefore low. A lower velocity will lead to a longer travel time, thus the actual arrival time will be later than
estimated, here we call it Positive delay.

The Granite is igneous rock, its density is high with fast velocity. A higher velocity will lead to a shorter travel time,
thus the actual arrival time will be earlier than estimated, we call it Negative delay.

In this tutorial, we set value of 0.05s for positive delay and -0.05s for negative delay.

semix = np.linspace(-1,1,101)
semiy = np.sqrt(1-semix**2)
semixy = np.zeros((101,2))
semixy[:,0] = semix
semixy[:,1] = semiy*0.5

for sta in stas:
plt.plot([hyc1_true[0],sta[0]],[hyc1_true[1],sta[1]],'k')

station, = plt.plot(stas[:,0],stas[:,1],'b^',ms=10,label="Station")
event, = plt.plot(hyc1_true[0],hyc1_true[1],'r*',ms=10,label='Event 1')
nodes = [[-25,10],[25,10],[25,0],[-25,0]]
p = Polygon(nodes,facecolor='lightgrey')
plt.gca().add_patch(p)
for sta in stas[:3]:

p_pos = Polygon(sta+semixy*2,facecolor='cyan')
plt.gca().add_patch(p_pos)

for sta in stas[4:]:
p_neg = Polygon(sta+semixy*2,facecolor='yellow')
plt.gca().add_patch(p_neg)

for i in range(stas.shape[0]):
sta = stas[i]
plt.text(sta[0]-3,sta[1]-0.5,'Sta '+str(i))

plt.xlabel("X (km)")
plt.ylabel("Depth (km)")
plt.xlim([-25,25])
plt.ylim([10,-2])
plt.legend([station,event,p_pos,p_neg],["Station","Event 1","River sediments","Granite
→˓"]);
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stas_delay = np.zeros((nsta,1))
stas_delay[:,0]= [0.05,0.05,0.05,0,-0.05,-0.05,-0.05]

11.3.4 Conduct inversion with delayed data

dobs1_delay = dobs1 + stas_delay
hyc1_abs_delay, sigma_m2 = iter_loc(hyc1_init,stas,dobs1_delay,Vp)
present_loc_results(hyc1_abs_delay,sigma_m2)
print("True location (hyc1_true) ","x: ",hyc1_true[0],"km; ","z: ",hyc1_true[1],"km; ",
→˓"t: ", format(hyc1_true[2],'.4f')+" s")

Iteration 0 square error: 1.36803100
Iteration 1 square error: 0.03083627
Iteration 2 square error: 0.00074298
Iteration 3 square error: 0.00073813
Iteration 4 square error: 0.00073813
Iteration 5 square error: 0.00073813
Iteration 6 square error: 0.00073813
Iteration 7 square error: 0.00073813
Iteration 8 square error: 0.00073813
Iteration 9 square error: 0.00073813
Iteration 10 square error: 0.00073813
x = -0.69 ± 0.04 km
z = 8.96 ± 0.14 km
t = -0.24 ± 0.02 s
True location (hyc1_true) x: -1 km; z: 8 km; t: 0.0000 s
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11.3.5 The second event

Now we consider a second event occurred close to the first event

hyc2_true = [1,8.3,1]
# Plot event, stations, and rays
fig,ax= plt.subplots(1,1)

# Add grey background
nodes = [[-25,10],[25,10],[25,0],[-25,0]]
p = Polygon(nodes,facecolor='lightgrey')
plt.gca().add_patch(p)

# Plot events
plt.plot(hyc1_true[0],hyc1_true[1],'r*',ms=10,label='Event 1')
plt.plot(hyc2_true[0],hyc2_true[1],'g*',ms=10, label="Event 2")

# Plot stations and rays
plt.plot(stas[:,0],stas[:,1],'b^',ms=10,label="Station")
for i in range(stas.shape[0]):

sta = stas[i]
plt.text(sta[0]-2,sta[1]-0.5,'Sta '+str(i))
plt.plot([hyc1_true[0],sta[0]],[hyc1_true[1],sta[1]],'k-')
plt.plot([hyc2_true[0],sta[0]],[hyc2_true[1],sta[1]],'w-')
if i<3:

p_pos = Polygon(sta+semixy*2,facecolor='cyan')
plt.gca().add_patch(p_pos)

if i>3:
p_neg = Polygon(sta+semixy*2,facecolor='yellow')
plt.gca().add_patch(p_neg)

# Set up plot elements
plt.xlim([-25,25])
plt.ylim([10,-2])
plt.xlabel("X (km)")
plt.ylabel("Depth (km)")
plt.title("Model")
plt.legend();
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dobs2 = np.zeros((nsta,1))
for i in range(dobs2.shape[0]):

dx = stas[i,0]-hyc2_true[0]
dz = stas[i,1]-hyc2_true[1]
dobs2[i,0] = np.sqrt(dx**2+dz**2)/Vtrue+hyc2_true[2]

hyc2_init = get_init_loc(dobs2,stas)

Initial trial parameters x: 0.0 km; z: 5.0 km; t: 1.6720 s

dobs2_delay = dobs2 + stas_delay
hyc2_abs, sigma_m2 = iter_loc(hyc2_init,stas,dobs2_delay,Vtrue)
present_loc_results(hyc2_abs,sigma_m2)
print("True location (hyc2_true) ","x: ",hyc2_true[0],"km; ","z: ",hyc2_true[1],"km; ",
→˓"t: ", format(hyc2_true[2],'.4f')+" s")

Iteration 0 square error: 1.12489413
Iteration 1 square error: 0.01976384
Iteration 2 square error: 0.00025005
Iteration 3 square error: 0.00024981
Iteration 4 square error: 0.00024981
Iteration 5 square error: 0.00024981
Iteration 6 square error: 0.00024981
Iteration 7 square error: 0.00024981
Iteration 8 square error: 0.00024981
Iteration 9 square error: 0.00024981
Iteration 10 square error: 0.00024981
x = 1.30 ± 0.02 km

(continues on next page)
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(continued from previous page)

z = 8.23 ± 0.08 km
t = 1.01 ± 0.01 s
True location (hyc2_true) x: 1 km; z: 8.3 km; t: 1.0000 s

11.3.6 Add Picking Noise

Note:
please refer to Earthquake Absolute Location tutorial for more information of add picking noise

Add random noise to simulate the phase picking uncertainty

mu = 0
sigma = 0.1
np.random.seed(252)
errors = np.random.normal(mu,sigma,size=(nsta,1))
dobs1_delay_noise = dobs1_delay+errors
np.random.seed(101)
errors = np.random.normal(mu,sigma,size=(nsta,1))
dobs2_delay_noise = dobs2_delay+errors

11.4 Double Difference Method

The travel-time residual of event 𝑖 at station 𝑘:

𝑟𝑖𝑘 = (𝑇 𝑖
𝑘)𝑜𝑏𝑠 − (𝑇 𝑖

𝑘)𝑐𝑎𝑙 comes from:

1. Earthquake location mistfit;

2. Earthquake origin time misfit;

3. Along ray-path velocity variation;

4. Station delay.

could be presented via below equation:

𝑟𝑖𝑘 =

2∑︁
𝑙=1

𝜕𝑇 𝑖
𝑘

𝜕𝑥𝑖
𝑙

∆𝑥𝑖
𝑙 + ∆𝜏 𝑖 +

∫︁ 𝑟𝑘

𝑠𝑖

∆𝑢𝑑𝑠 + 𝑆𝑘

𝑇 : travel time

𝜏 : event origin time

𝑠, 𝑟: source and receiver location

𝑢 = 1
𝑉 : slowness

𝑆𝑘: station delay

Event :math:`j`, station :math:`k`
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The travel-time residual of event 𝑗 at station 𝑘:

𝑟𝑗𝑘 = (𝑇 𝑗
𝑘 )𝑜𝑏𝑠 − (𝑇 𝑗

𝑘 )𝑐𝑎𝑙 =

2∑︁
𝑙=1

𝜕𝑇 𝑗
𝑘

𝜕𝑥𝑗
𝑙

∆𝑥𝑗
𝑙 + ∆𝜏 𝑗 +

∫︁ 𝑟𝑘

𝑠𝑗

∆𝑢𝑑𝑠 + 𝑆𝑘

11.4.1 Make difference

𝑟𝑖𝑘 − 𝑟𝑗𝑘 =

2∑︁
𝑙=1

𝜕𝑇 𝑖
𝑘

𝜕𝑥𝑖
𝑙

∆𝑥𝑖
𝑙 + ∆𝜏 𝑖 +

∫︁ 𝑟𝑘

𝑠𝑖

∆𝑢𝑑𝑠−
2∑︁

𝑙=1

𝜕𝑇 𝑗
𝑘

𝜕𝑥𝑗
𝑙

∆𝑥𝑗
𝑙 − ∆𝜏 𝑗 −

∫︁ 𝑟𝑘

𝑠𝑗

∆𝑢𝑑𝑠

Noted that station delay 𝑆 is removed.

𝑟𝑖𝑘 − 𝑟𝑗𝑘 = {(𝑇 𝑖
𝑘)𝑜𝑏𝑠 − (𝑇 𝑖

𝑘)𝑐𝑎𝑙} − {(𝑇 𝑗
𝑘 )𝑜𝑏𝑠 − (𝑇 𝑗

𝑘 )𝑐𝑎𝑙}

Reorganizing the equation leads to

𝑟𝑖𝑘 − 𝑟𝑗𝑘 = (𝑇 𝑖
𝑘 − 𝑇 𝑗

𝑘 )𝑜𝑏𝑠 − (𝑇 𝑖
𝑘 − 𝑇 𝑗

𝑘 )𝑐𝑎𝑙

This is the so-called double-difference.

If two events are close to each other, then they have similar ray paths, that is:∫︁ 𝑟𝑘

𝑠𝑖

∆𝑢𝑑𝑠 ≈
∫︁ 𝑟𝑘

𝑠𝑗

∆𝑢𝑑𝑠

The velocity anomaly along the ray path is the same for two events. Then we get

𝑟𝑖𝑘 − 𝑟𝑗𝑘 =

2∑︁
𝑙=1

𝜕𝑇 𝑖
𝑘

𝜕𝑥𝑖
𝑙

∆𝑥𝑖
𝑙 + ∆𝜏 𝑖 −

2∑︁
𝑙=1

𝜕𝑇 𝑗
𝑘

𝜕𝑥𝑗
𝑙

∆𝑥𝑗
𝑙 − ∆𝜏 𝑗

The travel time residual 𝑟𝑖𝑘 = (𝑇 𝑖
𝑘)𝑜𝑏𝑠 − (𝑇 𝑖

𝑘)𝑐𝑎𝑙, the travel time residual 𝑟𝑗𝑘 = (𝑇 𝑗
𝑘 )𝑜𝑏𝑠 − (𝑇 𝑗

𝑘 )𝑐𝑎𝑙, their difference is
related to:

1. Earthquake location misfit

2. Origin time misfit

and the error sources: 1. Station delay 2. Velocity variation along ray-path are remove or mitigated by double-difference

An inversion equation could be set up:

𝐺∆𝑚 = ∆𝑑

Detailed expression is, note the negative signs in the last 3 columns of data kernel G:

⎡⎢⎢⎢⎢⎣
𝜕𝑇 1

1

𝜕𝑥
𝜕𝑇 1

1

𝜕𝑧 1 −𝜕𝑇 2
1

𝜕𝑥 −𝜕𝑇 2
1

𝜕𝑧 −1
𝜕𝑇 1

2

𝜕𝑥
𝜕𝑇 1

2

𝜕𝑧 1 −𝜕𝑇 2
2

𝜕𝑥 −𝜕𝑇 2
2

𝜕𝑧 −1
...

...
...

...
...

...
𝜕𝑇 1

𝑘

𝜕𝑥
𝜕𝑇 1

𝑘

𝜕𝑧 1 −𝜕𝑇 2
𝑘

𝜕𝑥 −𝜕𝑇 2
𝑘

𝜕𝑧 −1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
∆𝑥1

∆𝑧1
∆𝑡1
∆𝑥2

∆𝑧2
∆𝑡2

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑟11 − 𝑟21
𝑟12 − 𝑟22

...
𝑟1𝑘 − 𝑟2𝑘

⎤⎥⎥⎥⎦
Practical usage will be introduced later.

Workflow
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hyc1_dd = hyc1_abs.copy()
hyc2_dd = hyc2_abs.copy()

11.5 1. Observed Travel Time Difference

obs_trav_t1 = dobs1_delay - hyc1_dd[2] # Travel time = arrival_time - origin_time
obs_trav_t2 = dobs2_delay - hyc2_dd[2]
obs_dt = obs_trav_t1 - obs_trav_t2

matrix_show(obs_dt)
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11.6 2. Calculated Travel Time Difference

dcal1 = np.zeros((nsta,1))
for i in range(dobs1.shape[0]):

dx = stas[i,0]-hyc1_dd[0]
dz = stas[i,1]-hyc1_dd[1]
dcal1[i,0] = np.sqrt(dx**2+dz**2)/Vtrue+hyc1_dd[2]

dcal2 = np.zeros((nsta,1))
for i in range(dobs1.shape[0]):

dx = stas[i,0]-hyc2_dd[0]
dz = stas[i,1]-hyc2_dd[1]
dcal2[i,0] = np.sqrt(dx**2+dz**2)/Vtrue+hyc2_dd[2]

cal_trav_t1 = dcal1 - hyc1_dd[2] # Travel time = calculated_time - origin_time
cal_trav_t2 = dcal2 - hyc2_dd[2]
cal_dt = cal_trav_t1 - cal_trav_t2
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11.7 3. Calculate Double-Difference

dtdt = obs_dt - cal_dt
matrix_show(dtdt)

11.8 4. Build Up Data Kernel - G

ncol = 3 * 2 # Two event, each has 3 parameter (delta x, delta z, delta t)
G = np.zeros((nsta,ncol))
G[:,2]=1; G[:,5] = -1 # Partial derivative of origin column is 1
for i in range(nsta):

for j in range(2):
denomiter1 = np.sqrt((hyc1_dd[0]-stas[i,0])**2+(hyc1_dd[1]-stas[i,1])**2)
G[i,j]=(hyc1_dd[j]-stas[i,j])/denomiter1/Vtrue
denomiter2 = np.sqrt((hyc2_dd[0]-stas[i,0])**2+(hyc2_dd[1]-stas[i,1])**2)
G[i,j+3]=-(hyc2_dd[j]-stas[i,j])/denomiter2/Vtrue

matrix_show(G)
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11.9 5. Check GTG Inverse Exists

𝐺∆𝑚 = ∆𝑑

𝐺 is not a square matrix, 𝐺𝑇𝐺 is a squared matrix, we then have:

𝐺𝑇𝐺∆𝑚 = 𝐺𝑇 ∆𝑑

If the inverse of 𝐺𝑇𝐺 exists (the determinnant != 0, in here we have 10 observations to solve for 4 parameters), then:

∆𝑚 = (𝐺𝑇𝐺)−1𝐺𝑇 ∆𝑑

GTG = np.matmul(G.T,G)
det = np.linalg.det(GTG) # Calculate matrix determinant
if det == 0:

print("Error! The determinant is ZERO!!!")

Error! The determinant is ZERO!!!

11.10 6. Add Damp to Matrix

Determinant equals zero means there is no unique solution to the inverse problem, that is, the constraints in data kernel
G are not enough to get a result, more constraints is needed. The common method is to add damp to the data kernel.

### Damping the kernel Before damping: [︀
𝐺
]︀ [︀

𝑚
]︀

=
[︀
𝑑
]︀
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After damping: [︂
𝐺
𝜆𝐼

]︂ [︀
𝑚
]︀

=

[︂
𝑑
𝑂

]︂
𝐼 is an identity matrix, in this case, it should have columns with G, so its dimension is 6 × 6, here:

𝜆𝐼 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜆 0 0 0 0 0
0 𝜆 0 0 0 0
0 0 𝜆 0 0 0
0 0 0 𝜆 0 0
0 0 0 0 𝜆 0
0 0 0 0 0 𝜆

⎤⎥⎥⎥⎥⎥⎥⎦
### Mathematical Meaning Write new constraints in equation, that is:

𝜆∆𝑥1 = 0 (11.1)
𝜆∆𝑧1 = 0(11.2)
𝜆∆𝑡1 = 0(11.3)
𝜆∆𝑥2 = 0(11.4)
𝜆∆𝑧2 = 0(11.5)
𝜆∆𝑡2 = 0(11.6)

What does this mean? It means that the solution SHOULD be zero. As a least square problem solution is a trade-
off among equations. The application of damping factor will lead to the solution be small values. 𝜆 controls the
weight(importance) of damping. A large damp will lead to the solution more close to zero.

G_dp = np.zeros((nsta+ncol,ncol))
G_dp[:nsta,:] = G
damp = 0.1
G_dp[nsta:,:] = np.diag([1,1,1,1,1,1])*damp
dtdt_damp = np.zeros((nsta+ncol,1))
dtdt_damp[:nsta,0] = dtdt.ravel()

matrix_show(G_dp)
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11.11 7. Solve Damped Problem

Step 1: [︂
𝐺
𝜆𝐼

]︂ [︀
𝑚
]︀

=

[︂
𝑑
𝑂

]︂
Step 2:

[︀
𝐺𝑇𝜆𝐼

]︀ [︂𝐺
𝜆𝐼

]︂ [︀
𝑚
]︀

=
[︀
𝐺𝑇𝜆𝐼

]︀ [︂𝑑
𝑂

]︂
Step 3: [︀

𝐺𝑇𝐺 + 𝜆2𝐼
]︀ [︀

𝑚
]︀

=
[︀
𝐺𝑇 𝑑

]︀
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Step 4:

𝑚 = (𝐺𝑇𝐺 + 𝜆2𝐼)−1𝐺𝑇 𝑑

G_dpTG_dp = np.matmul(G_dp.T,G_dp)
G_dpTG_dp_inv = np.linalg.inv(G_dpTG_dp)
G_dpTG_dp_inv_G_dpT = np.matmul(G_dpTG_dp_inv,G_dp.T)
m = np.matmul(G_dpTG_dp_inv_G_dpT,dtdt_damp)

matrix_show(m)

11.12 8. Update Location

The output results are the earthquake location misfit with reference to its absolute location. Therefore, the absolute
earthquake location should be updated.

𝑥1 = 𝑥1 + ∆𝑥1

𝑧1 = 𝑧1 + ∆𝑧1

𝑡1 = 𝑡1 + ∆𝑡1

𝑥2 = 𝑥2 + ∆𝑥2

𝑧2 = 𝑧2 + ∆𝑧2

𝑡2 = 𝑡2 + ∆𝑡2

hyc1_dd = hyc1_dd+m.ravel()[:3]
hyc2_dd = hyc2_dd+m.ravel()[3:]

We can see the solutions already depart the initial location and move closer to the true location
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xmin = min(hyc1_true[0],hyc1_abs[0],hyc1_dd[0])
xmax = max(hyc1_true[0],hyc1_abs[0],hyc1_dd[0])
ymin = min(hyc1_true[1],hyc1_abs[1],hyc1_dd[1])
ymax = max(hyc1_true[1],hyc1_abs[1],hyc1_dd[1])
plt.plot(hyc1_true[0],hyc1_true[1],"bo",label="Event 1 true location")
plt.plot(hyc2_true[0],hyc2_true[1],"ro",label="Event 2 true location")
plt.plot(hyc1_abs[0],hyc1_abs[1],'bx',label="Event 1 absolute location")
plt.plot(hyc2_abs[0],hyc2_abs[1],'rx',label="Event 2 absolute location")
plt.plot(hyc1_dd[0],hyc1_dd[1],'b*',label="Event 1 dd location")
plt.plot(hyc2_dd[0],hyc2_dd[1],'r*',label="Event 2 dd location")
plt.gca().set_aspect('equal')
plt.legend()
plt.ylim(ymax+0.5,ymin-0.5)
plt.ylabel("Depth (km)")
plt.xlabel("X (km)");

11.13 9. Error analysis

The error in observed data will of course lead to uncertainties in the estimation of earthquake location parameters.
Their relationship could be described as:

𝜎2
𝑚 = 𝜎2(𝐺𝑇𝐺 + 𝜆2𝐼)−1

(Wanna know how this relationship derived? Page 435 of An Introduction to Seismology, Earthquakes, and Earth
Structure)

mean_dtdt_damp = np.mean(dtdt_damp)
e2 = 0

(continues on next page)
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(continued from previous page)

for i in range(dtdt.shape[0]):
e2 += (dtdt_damp[i,0] - mean_dtdt_damp)**2

print(f"Square error: ",format(e2,'13.8f'))
var = e2/(dtdt_damp.shape[0]-6)
sigma_m2 = G_dpTG_dp_inv*var

Square error: 0.04330659

present_loc_results(hyc1_dd,sigma_m2[:3,:3])
present_loc_results(hyc2_dd,sigma_m2[3:,3:])

x = -0.80 ± 0.56 km
z = 8.60 ± 0.64 km
t = -0.14 ± 0.56 s
x = 1.24 ± 0.55 km
z = 8.54 ± 0.63 km
t = 0.90 ± 0.56 s

Exercise (5 min)
Try to modify the damp parameter and update the results, how it changes? What is the relationship between damping
factor, m, and Uncertainty? Can you explain why?

11.14 10. Condition Number

We have realized that the damping factor controls the converge rate, a larger damping factor will lead to slow converge
rate but small uncertainty; a smaller damping factor will lead to fast converge rate but large uncertainty. Then how to
choose proper damping factor?

A good indicator is the conditon number. Conditon number quantifies the relationship between solution error and data
error. In earthquake double difference location, the condition number should be in the range 40-100 (empirical).

cond = np.linalg.cond(G_dp)
print("Condtion number is: ",format(cond,'.2f'))

Condtion number is: 37.72

Exercise: Start Another Iteration
The error is still high, update the earthquake location and rerun the process to check the location variation.

11.15 Iterative Double-Difference Method

hyc1_loop = hyc1_abs
hyc2_loop = hyc2_abs
niter = 100
k = 0
event_number = 2
event_parameters = 3 #(x,y,z)

(continues on next page)
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(continued from previous page)

#----------Iteration starts----------------------
while k <=niter:

#----1. Update observed travel time difference------------------
obs_trav_t1 = dobs1_delay - hyc1_dd[2] # Travel time = arrival_time -␣

→˓origin_time
obs_trav_t2 = dobs2_delay - hyc2_dd[2]
obs_dt = obs_trav_t1 - obs_trav_t2
#----2. Update calculated travel time difference------------------
dcal1 = np.zeros((dobs1.shape[0],1))
for i in range(dobs1.shape[0]):

dx = stas[i,0]-hyc1_loop[0]
dz = stas[i,1]-hyc1_loop[1]
dcal1[i,0] = np.sqrt(dx**2+dz**2)/Vtrue+hyc1_loop[2]

dcal2 = np.zeros((dobs2.shape[0],1))
for i in range(dobs1.shape[0]):

dx = stas[i,0]-hyc2_loop[0]
dz = stas[i,1]-hyc2_loop[1]
dcal2[i,0] = np.sqrt(dx**2+dz**2)/Vtrue+hyc2_loop[2]

cal_trav_t1 = dcal1 - hyc1_dd[2]
cal_trav_t2 = dcal2 - hyc2_dd[2]
cal_dt = cal_trav_t1 - cal_trav_t2
#----3. Calculate double difference-------------------------------
dtdt = obs_dt - cal_dt
#----4. Set up G kernel-------------------------------------------
ncol = event_number * event_parameters
G = np.zeros((nsta,ncol))
G[:,2]=1; G[:,5] = -1 # Partial derivative of origin column is 1
for i in range(nsta):

for j in range(2):
denomiter1 = np.sqrt((hyc1_loop[0]-stas[i,0])**2+(hyc1_loop[1]-stas[i,1])**2)
G[i,j]=(hyc1_loop[j]-stas[i,j])/denomiter1/Vtrue
denomiter2 = np.sqrt((hyc2_loop[0]-stas[i,0])**2+(hyc2_loop[1]-stas[i,1])**2)
G[i,j+3]=-(hyc2_loop[j]-stas[i,j])/denomiter2/Vtrue

#----5. Add damp--------------------------------------------------
G_dp = np.zeros((nsta+ncol,ncol))
G_dp[:nsta,:] = G
damp = 0.1
G_dp[nsta:,:] = np.diag([1,1,1,1,1,1])*damp
dtdt_damp = np.zeros((nsta+ncol,1))
dtdt_damp[:nsta,0] = dtdt.ravel()
#----6. Solve for Solution-----------------------------------------
G_dpTG_dp = np.matmul(G_dp.T,G_dp)
G_dpTG_dp_inv = np.linalg.inv(G_dpTG_dp)
G_dpTG_dp_inv_G_dpT = np.matmul(G_dpTG_dp_inv,G_dp.T)
m = np.matmul(G_dpTG_dp_inv_G_dpT,dtdt_damp)
#----7. Update location-----------------------------------------------
hyc1_loop = hyc1_loop+m.ravel()[:3]
hyc2_loop = hyc2_loop+m.ravel()[3:]
#----8. Error Calculation------------------------------------------------
mean_dtdt_damp = np.mean(dtdt_damp)
e2 = 0
for i in range(dtdt.shape[0]):

(continues on next page)

152 Chapter 11. Double-Difference Earthquake Relocation



CUSeisTut, Release 0.0.1

(continued from previous page)

e2 += (dtdt_damp[i,0] - mean_dtdt_damp)**2
print(f"Iteration {format(k,'4d')} square error: ",format(e2,'13.8f'))
if e2<0.0000000001:

print("Itertion stopped for too small error!")
break

k = k+1
#--------9. Variance analysis-------------------------------------------
var = e2/(dtdt_damp.shape[0]-event_number * event_parameters)
sigma_m2 = G_dpTG_dp_inv*var
hyc1_dd = hyc1_loop
hyc2_dd = hyc2_loop

Iteration 0 square error: 0.04330659
Iteration 1 square error: 0.00096939
Iteration 2 square error: 0.00013074
Iteration 3 square error: 0.00005316
Iteration 4 square error: 0.00004521
Iteration 5 square error: 0.00004369
Iteration 6 square error: 0.00004278
Iteration 7 square error: 0.00004195
Iteration 8 square error: 0.00004113
Iteration 9 square error: 0.00004032
Iteration 10 square error: 0.00003954
......
Iteration 90 square error: 0.00000830
Iteration 91 square error: 0.00000814
Iteration 92 square error: 0.00000799
Iteration 93 square error: 0.00000784
Iteration 94 square error: 0.00000769
Iteration 95 square error: 0.00000754
Iteration 96 square error: 0.00000740
Iteration 97 square error: 0.00000726
Iteration 98 square error: 0.00000713
Iteration 99 square error: 0.00000699
Iteration 100 square error: 0.00000686

present_loc_results(hyc1_dd,sigma_m2[:3,:3],std_fmt='.5f')
present_loc_results(hyc2_dd,sigma_m2[3:,3:],std_fmt='.5f')

x = -0.87 ± 0.00700 km
z = 8.16 ± 0.00790 km
t = -0.12 ± 0.00700 s
x = 1.14 ± 0.00700 km
z = 8.41 ± 0.00800 km
t = 0.88 ± 0.00700 s
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11.15.1 LSQR Algorithm

Considering a double difference cluster with 1000 events, we estimate the time consumed for one iteration. Note the
𝐺𝑇𝐺 dimension is 4000 × 4000, it costs 16 seconds to calculate the inverse and singular value decomposition. What
about 10 k events?

G = np.random.randn(4000,4000)

tmp1 = time.time()
G_inv = np.linalg.inv(G)
u,s,vt = np.linalg.svd(G_inv)
tmp2 = time.time()
print(tmp2-tmp1,' s')
if (tmp2-tmp1)>5:

print("Wow, it cost a lot of time of do the calculation")

38.39115285873413 s
Wow, it cost a lot of time of do the calculation

Introduction to LSQR
Least-Square QR decompositon (LSQR, Paige, C.C and Saunders, M.A. (1982)) method is developed for least-square
solution for large dataset, its performance in ill-conditioned problems is superior.

From problemAm = b, Amaps the solution to the data space. AT maps the data to the solution space. LSQR method
eliminates residual iteratively with limited computation.

To ensure the stability of method, each A column is required to be scaled up to be unit value. That is:

Am =
[︀
𝐴1 𝐴2 · · · 𝐴𝑘

]︀
⎡⎢⎢⎢⎣
𝑚1

𝑚2

...
𝑚𝑘

⎤⎥⎥⎥⎦
= 𝐴1𝑚1 + 𝐴2𝑚2 + · · · + 𝐴𝑘𝑚𝑘

=
𝐴1

‖𝐴1‖
(‖𝐴1‖𝑚1) +

𝐴2

‖𝐴2‖
(‖𝐴2‖𝑚2) + · · · +

𝐴𝑘

‖𝐴𝑘‖
(‖𝐴𝑘‖𝑚𝑘)

= A′m′ = b

After get the solution, a conversion between m′ and m is needed by 𝑚𝑖 =
𝑚′

𝑖

‖𝐴𝑖‖

hyc1_loop = hyc1_abs
hyc2_loop = hyc2_abs
niter = 100
k = 0
event_number = 2
event_parameters = 3 #(x,y,z)
#----------Iteration starts----------------------
while k <=niter:

#----1. Update observed travel time difference------------------
obs_trav_t1 = dobs1_delay - hyc1_dd[2] # Travel time = arrival_time -␣

→˓origin_time
obs_trav_t2 = dobs2_delay - hyc2_dd[2]
obs_dt = obs_trav_t1 - obs_trav_t2

(continues on next page)
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(continued from previous page)

#----2. Update calculated travel time difference------------------
dcal1 = np.zeros((dobs1.shape[0],1))
for i in range(dobs1.shape[0]):

dx = stas[i,0]-hyc1_loop[0]
dz = stas[i,1]-hyc1_loop[1]
dcal1[i,0] = np.sqrt(dx**2+dz**2)/Vtrue+hyc1_loop[2]

dcal2 = np.zeros((dobs2.shape[0],1))
for i in range(dobs1.shape[0]):

dx = stas[i,0]-hyc2_loop[0]
dz = stas[i,1]-hyc2_loop[1]
dcal2[i,0] = np.sqrt(dx**2+dz**2)/Vtrue+hyc2_loop[2]

cal_trav_t1 = dcal1 - hyc1_dd[2]
cal_trav_t2 = dcal2 - hyc2_dd[2]
cal_dt = cal_trav_t1 - cal_trav_t2
#----3. Calculate double difference-------------------------------
dtdt = obs_dt - cal_dt
#----4. Set up G kernel-------------------------------------------
ncol = event_number * event_parameters
G = np.zeros((nsta,ncol))
G[:,2]=1; G[:,5] = -1 # Partial derivative of origin column is 1
for i in range(nsta):

for j in range(2):
denomiter1 = np.sqrt((hyc1_loop[0]-stas[i,0])**2+(hyc1_loop[1]-stas[i,1])**2)
G[i,j]=(hyc1_loop[j]-stas[i,j])/denomiter1/Vtrue
denomiter2 = np.sqrt((hyc2_loop[0]-stas[i,0])**2+(hyc2_loop[1]-stas[i,1])**2)
G[i,j+3]=-(hyc2_loop[j]-stas[i,j])/denomiter2/Vtrue

#---- Scale up G columns to unit length--------------------------
Gnorms = np.zeros(ncol)
for i in range(ncol):

norm = np.linalg.norm(G[:,i])
Gnorms[i] = norm
G[:,i] = G[:,i]/norm

#----6. LSQR and rescale solution---------------------------------
damp = 0.1
A = csc_matrix(G, dtype=float)
m,istop,itn,r1norm,r2norm,anorm,acond,arnorm,xnorm,var=lsqr(A,dtdt,damp=damp,calc_

→˓var=True)
m = np.divide(m,Gnorms)
var = np.divide(var,Gnorms**2)
#----7. Update location-----------------------------------------------
hyc1_loop = hyc1_loop+m.ravel()[:3]
hyc2_loop = hyc2_loop+m.ravel()[3:]
#----8. Error Calculation------------------------------------------------
print(f"Iteration {format(k,'4d')} residual: ",format(r1norm,'13.8f'))
if r1norm<0.0000000001:

print("Itertion stopped for too small error!")
break

k = k+1
#--------9. Variance analysis-------------------------------------------
sigma_m2 = np.diag(var)**2*r2norm**2
hyc1_dd = hyc1_loop
hyc2_dd = hyc2_loop
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Iteration 0 residual: 0.01522528
Iteration 1 residual: 0.00683196
Iteration 2 residual: 0.00624882
Iteration 3 residual: 0.00581534
Iteration 4 residual: 0.00541587
Iteration 5 residual: 0.00504727
Iteration 6 residual: 0.00470742
Iteration 7 residual: 0.00439429
Iteration 8 residual: 0.00410597
Iteration 9 residual: 0.00384061
Iteration 10 residual: 0.00359645
......
Iteration 95 residual: 0.00013054
Iteration 96 residual: 0.00012620
Iteration 97 residual: 0.00012201
Iteration 98 residual: 0.00011796
Iteration 99 residual: 0.00011405
Iteration 100 residual: 0.00011026

We then find the residual is very small, and the earthquake location almost reached its true location

xmin = min(hyc1_true[0],hyc1_abs[0],hyc1_dd[0])
xmax = max(hyc1_true[0],hyc1_abs[0],hyc1_dd[0])
ymin = min(hyc1_true[1],hyc1_abs[1],hyc1_dd[1])
ymax = max(hyc1_true[1],hyc1_abs[1],hyc1_dd[1])
plt.plot(hyc1_true[0],hyc1_true[1],"bo",label="Event 1 true location")
plt.plot(hyc2_true[0],hyc2_true[1],"ro",label="Event 2 true location")
plt.plot(hyc1_abs[0],hyc1_abs[1],'bx',label="Event 1 absolute location")
plt.plot(hyc2_abs[0],hyc2_abs[1],'rx',label="Event 2 absolute location")
plt.plot(hyc1_dd[0],hyc1_dd[1],'*',color='green',label="Event 1 dd location")
plt.plot(hyc2_dd[0],hyc2_dd[1],'*',color='k',label="Event 2 dd location")
plt.gca().set_aspect('equal')
plt.legend()

plt.ylim(ymax+0.5,ymin-0.5)
plt.ylabel("Depth (km)")
plt.xlabel("X (km)");
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present_loc_results(hyc1_dd,sigma_m2[:3,:3],std_fmt='.8f')
present_loc_results(hyc2_dd,sigma_m2[3:,3:],std_fmt='.8f')

x = -0.99 ± 0.03210000 km
z = 8.00 ± 0.04610000 km
t = -0.12 ± 0.00000000 s
x = 1.01 ± 0.03280000 km
z = 8.30 ± 0.04760000 km
t = 0.88 ± 0.00000000 s

11.16 Summary

In this tutorial, we first demonstrate the influence of velocity misfit and Station delay’s influence on earthquake location
results.

We then introduce the double-difference method, which theoretically diminishes the station delay effect and limits the
influence of velocity misfit. During processing, we: * Set up the data kernel G and calculate the double difference
array dtdt * Add damping to the data kernel to make it stable (determinant not be zero) * Use conditon number to
guide the selection of damping factor * Comparison shows double-difference location leads to location with better
performance

Note:
we use one-layer velocity model for the convenience in finding the ray partial derivatives.
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11.16.1 Homework

1. In the demo example, is event origin time fully recovered? Could you please explain the reason?(10 points)

2. Note we add negative symbol to partial derivatives of the event 2 in constructing the data kernel, do you know
why? (10 points)

3. In calculating the variance(var), it is written var = e2/(dtdt_damp.shape[0]-event_number *
event_parameters), do you know why variance is different from square error here? (10 points)

4. Add one more event hyc_true3 = (0.2,8.1,1) (x,z,t) and prepare for inversion, set up suitable damping factor so that
condition number is in the range 40-100.(80 points) - Show the absolute location result of the newly added event
and its uncertainty. (20 points) - Show your data kernel G for Double-Difference inversion and its determinant.
(20 points) - Show your Double-Difference inversion result and its uncertainty, how many iterations you used?
(20 points) - Did your results get closer to true earthquake locations? Make a plot and show (20 points) ####
Hint The dimension of 𝑚 should be 9 × 1

𝑚𝑇 =
[︀
∆𝑥1 ∆𝑧1 ∆𝑡1 ∆𝑥2 ∆𝑧2 ∆𝑡2 ∆𝑥3 ∆𝑧3 ∆𝑡3

]︀
For the double-difference value of event_1 and event_2 recorded in station k, its corresponding row
of data kernel G should be:[︁

𝜕𝑇 1
𝑘

𝜕𝑥
𝜕𝑇 1

𝑘

𝜕𝑧
𝜕𝑇 1

𝑘

𝜕𝑡 −𝜕𝑇 2
𝑘

𝜕𝑥 −𝜕𝑇 2
𝑘

𝜕𝑧 −𝜕𝑇 2
𝑘

𝜕𝑡 0 0 0
]︁

For the double-difference value of event_2 and event_3 recorded in station k, its corresponding row
of data kernel G should be:[︁

0 0 0
𝜕𝑇 2

𝑘

𝜕𝑥
𝜕𝑇 2

𝑘

𝜕𝑧
𝜕𝑇 2

𝑘

𝜕𝑡 −𝜕𝑇 3
𝑘

𝜕𝑥 −𝜕𝑇 3
𝑘

𝜕𝑧 −𝜕𝑇 3
𝑘

𝜕𝑡

]︁

11.16.2 Source code

Download tutorial code here
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TWELVE

SPECTRAL ANALYSIS

12.1 Introduction

12.1.1 What is earthquake stress drop?

Stress drop is an important earthquake source parameter, which is proportional to the ratio of fault slip to rupture extent
(D/L). The higher stress drop means larger slip given the same rupture area. Since stress drop reflects the strength level
on faults, the evolution of the stress drop may indicate some activities on faults such as fluid migration.

12.1.2 Stress drop in a circular fault

For a circular fault in a whole space, Eshelby(1957) obtained the relation between the average stress drop and the
seismic moment:

12.1.3 What is earthquake spectrum?

We can calculate the spectrum for earthquakes from the seismograms after removing the effects from the path. The
amplitude in the low frequency limit is determined by earthquake moment (M0). The spectrum starts to decay around
corner frequency (fc), and keep a nearly constant decay rate in log-log domain in the high frequency.

Figure 1: (Figure 9.13 in Introduction to Seismology) The relationships between near-field displacement and far-field
displacement and velocity for time series (left two panels) and spectra (right panel).
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12.1.4 Brune’s model for far-field spectrum

Linking the spectra with the source parameters requires assumptions on the source. Brune (1970) assume a built up the
relationship between the source spectra and the source parameters including the stress drop. He assumed that the stress
pulse is tangential and rupture velocity is infinite on a circular rupture surface, then derived the near-filed displacement
under the constraint of edge-effect. The slip and slip rate on the fault evolve with time.

The functions of slip and slip rate on faults in Brune’s model

Figure 2: the shape of slip and slip rate function in Brune’s model.

The conservation of energy density at high frequency and long-period limit(static field ) were applied to constrain the
displacement in Brune’s model. Brune’s model has been widely used in spectral analysis in the following format to
link the spectra with the seismic moment and stress drop:

12.1.5 Path and free surface effects

To calculate the source spectra, the effects from the path and depth phases should be removed. In this tutorial, we will
try to remove the attenuation term. For earthquakes happened in shallow depth with relative long duration, the depth
phases may overlap with P wave and impact the spectral shape (Hanks, 1981). Therefore, we need to calculate and
remove the effect from those depth phases.

All those processing process will be included in the tutorial package spectral_analysis.zip. Following is an
example of spectral analysis of 2017-11-13 M7.3 Iran earthquake.
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12.2 Example: the 2017-11-12 Iran M7.3 earthquake

12.2.1 Download the waveforms and pre=processing

We use waveforms with epicentral distances of 30-90 degree. We provide some waveforms in the tutorial packages.
You can also download the waveforms from IRIS. Considering the duration of the earthquake, we select a time window
of 40s, starting from the P arrival for the spectra calculation. We taper the waveforms in 15s windows at the two ends
of the selected time windows.

Note:
Pre-processing including taper, rmean, and so on are needed before start spectral analysis. Waveforms need to be
transformed to displacement when removing the instrumental response. Please refer to the ObsPy tutorial. The
waveforms provided in the package have been preprocessed. The codes for cutting and tapering are contained in the
main script - spectral_analysis.m

Note:
We can see the waveform shape varies with azimuth due to the rupture directivity effect. It is suggested to use
waveforms covering all the azimuth.

12.2.2 Calculate spectra

Then we calculate the spectra for each waveform traces by conducting fast Fourier transform. The function used here
is sacfft.m

>>> function [amplitude, phase, frequency]=sacfft(displacement_seri, time_seri);
% Inputs: the displacement (m) and time series of the waveforms.
% Outputs in the left: the amplitude, phase term, and the frequency of the spectra
>>> amplitude=log10(amplitude);
% following processing are all conducted in log domain
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12.2.3 Correction for spreading term and radiation pattern

It has been illustrated in equation (2) that the amplitude of the spectra decay with ray path length with 1/R and is
proportional to the radiation term. Here, we correct for the two terms using the functions direct_P.m

>>> function [radiationp,Ray_len,Amp_P]=direct_P(dist,depth,Azi,M,path)
% inputs in the right: epicentral distance (dist), source_depth(km,depth), azimuth of␣
→˓station (Azi), moment tensor (M),path to the folder TT_M (path)
% outputs in the left: p wave radiation term (radiationp), ray path length (ray_len),␣
→˓synthetic amplitude of P

The normalized moment tensor has been given as M.dat in the package. It can be downloaded from the GCMT website.
The epicentral distance and azimuth info are extracted from the sac files. The TT_M folder contains info of the earth
model and table for ray parameters. After calculate the synthetic amplitude given a normalized moment tensor, we
correct the spectral by substract it from the raw spectra in the log domain. The the amplitude of the spectral should
represent the seismic moment (Nm).

>>> amplitude=amplitude-log10(Amp_P);
% correction for the spreading term and the radiation pattern

Note:
The amplitudes of spectra obviously become more concentrated after the correction, indicating that the scattering is
mostly caused by the radiation pattern and the spreading term.

12.2.4 Correction for attenuation

Here, we adopt the global attenuation model to correct the spectra (Choy and Boatwright, 1985). The correction is
based on the function corre.m.

>>> function tp = corre(f)
% f: frequency; tp: correction factor for attenuation as a function of frequency
>>> amplitude=amplitude-log10(corr(f));
% correct for attenuation
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12.2.5 Correction for the depth phases

The depth of the event is 19 km in the SAC files. Given the depth here, the relative arrival times of sP and pP phases
are within 15 seconds and contribute to the spectra. Here, we calculate the synthetic spectra for the depth phases effect
using the function depth_phase_spectrum.m

>>> function [depth_time,response_depth,anp_dep,ph_dep,ffn_dep]=depth_phase_
→˓spectrum(filename,window_length,datalength,M,path)
% Inputs: the name of the sac file (filename); the length of the selected windows in␣
→˓second (window_length);
% Inputs: the length of the time series used in Fourier transform; moment tensor(M);path␣
→˓to the folder TT_M
% Outputs: time series(depth_time);synthetic waveforms normalized by P wave amplitude;
% amplitude of spectra for depth phase effect (anp_dep); phase term (ph_dep); frequency␣
→˓(ffn_dep)
>>> amplitude=amplitude-log10(anp_dep);
% correct for depth phase term effect

Note:
The depth phase will largely affect the waveform shape at low frequency. It is obvious that the spectra become more
flat after correcting for the depth phases.
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12.2.6 Estimating the moment and stress drop

The average magnitude of spectra in the low frequency limit is ~ 4*10^19 Nm. The moment magnitude is 1.1*10^20
Nm. The moment magnitude is 7.3. The corner frequency is ~0.1 Hz. Assuming a P wave speed of 3900 km/s
and a density of 3000kg/m^3, the stress drop is estimated to be 25 MPa, residing in the normal range for continental
earthquakes.

Note:
The fitting of the spectrum may bare considerable uncertainties according to your fitting algorithm. The uncertainties
will be further amplified in the estimate for the stress drop. For example, if the corner frequency change by 20%, from
0.1 to 0.08 Hz, the estimated stress drop will decrease by half from 25 to 13 MPa.
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THIRTEEN

STATIC STRESS CHANGE - PYLITH

13.1 Brief introduction

Earthquake modeling provides a broad range of possible earthquake scenarios using physics-based models, which
is critical for seismic hazard assessment. By incorporating observations and laboratory tests into models, we have
better understanding of earthquake behaviors by recreating past earthquakes, and explore the range of potential future
earthquakes, thus bridging our knowns and unknowns.

13.1.1 What is PyLith?

PyLith is a finite-element code for quasi-static and dynamic simulations of crustal deformation, primarily earthquakes
and volcanoes. Quasi-static problems, also known as implicit problems, solve for the governing equations while neglect-
ing the inertial terms. There are different quasi-static problems related to earthquakes in PyLith, including coseismic
stress changes and fault slip, strain accumulation associated with interseismic deformation, and postseismic relaxation
of the crust.

13.1.2 Aim of this module

In this teaching module, we will focus on solving for the stress change corresponding to a fault slip distribution.

Do you know why an earthquake would happen? When the stresses on a fault plane overcomes the friction, a
sudden slip would occur on the fault, releasing energy in waves that travel through the earth’s crust. This is known as
an earthquake. Therefore, it is evident that there are stress changes on the fault after an earthquake.

In other words, given a slip distribution caused by an earthquake, there should be a corresponding stress change. This
tutorial considers this as a quasi-static problem and aims to solve this problem through numerical simulation. In PyLith,
the problem will be solved when the residual of the governing equation approaches zero.

In this tutorial, we will demonstrate a simple 3D case study. We will prescribe the heterogeneous slip distribution on
the fault and the fault geometry using the mesh shown in the figure below.
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figure 1. 3D mesh given in this tutorial with dimensions in kilometers

Then we will run the static simulation to obtain the stress change, so you will learn:

1. the input parameters,
2. initiating a quasi-static simulation,
3. visualizing the output.

13.1.3 How to install PyLith?

1. Download the PyLith package suitable for your computer here, and then move it into your working directory

2. Open a terminal in Linux or Mac OS X (Darwin) platform and run these commands sequentially. For Windows 10
Users, we recommend using the Windows Subsystem for Linux (WSL). The installation of WSL could be found here
or searched online. Please note that PyLith is using Python2.7. For the new MacOS updates where Python2.7 is
removed, you would need to set the environment.

Warning: Exclude $ and start without whitespace!

$ tar xvf pylith-2.2.2-linux-x86_64.tar.gz
$ cd pylith-2.2.2-linux-x86_64/
$ source setup.sh

3. Check if it has been successfully installed

$ pylith
>> {default}::
-- pyre.inventory(error)

(continues on next page)
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(continued from previous page)

-- meshimporter.meshioascii.filename <- ''
-- Filename for ASCII input mesh not specified. To test PyLith, run an example as␣
→˓discussed in the manual.
>> {default}::
-- pyre.inventory(error)
-- timedependent.homogeneous.elasticisotropic3d.label <- ''
-- Descriptive label for material not specified.
>> {default}::
-- pyre.inventory(error)
-- timedependent.homogeneous.elasticisotropic3d.simpledb.label <- ''
-- Descriptive label for spatial database not specified.
>> {default}::
-- pyre.inventory(error)
-- timedependent.homogeneous.elasticisotropic3d.simpledb.simpleioascii.filename <- ''
-- Filename for spatial database not specified.
pylithapp: configuration error(s)

13.2 Simple 3D case study - Nepal

1. Download the tutorial package pylith_static.tar.gz and move it to your working directory
2. Run this command to decompress the package

$ tar xvf pylith_static.tar.gz

3. ls different folders in the directory to familiarize yourself with the different files required for a static simulation

For running the static simulation, you will need configuration files (.cfg) that specifies the problem, mesh (.exo) where
the simulation takes place, spatial database files (.spatialdb) that describes the variables in space. Here we have two
spatial database files - one for the material property, and one for the fault slip distribution. Since the mesh generating
softwares are commercial, we will only illustrate the structure and some important parameters of the configuration and
spatial database files in the following.

13.2.1 Basic structure of a configuration (.cfg) file

Now, let’s take a took at the Nepal_kinematic_model.cfg under the pylith_static directory. For a simulation in PyLith,
you would need a configuration file (.cfg) which specifies the basic parameters of the simulation.

1. Problem

[pylithapp.timedependent.formulation.time_step] Settings that control the time of the problem. Note that
static, quasi-static, and dynamic simulations are also time dependent problems in PyLith. total_time specifies the
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total time. We adjust the total simulation time to 0 second because we are running a static simulation. dt specifies the
time step size.

[pylithapp.mesh_generator.reader] Settings that control mesh importing. filename specifies the filename of
the mesh.

[pylithapp.timedependent.materials] Settings that control the material type. db_properties.iohandler.
filename specifies the name of the spatial database containing the physical properties for the material.
db_properties.query_type specifies the type of search query to perform. This parameter can be set to ‘linear’
or ‘nearest’.

2. Boundary condition

[pylithapp.timedependent] Settings that control the problem, including the spatial dimension of the mesh. bc
specifies the boundary conditions for different sides of the mesh. bc_dof specfies which degrees of freedom are being
constrained for the boundary conditions. Note that the Degree of freedoms are: x=0, y=1, and z=2. For instance, bc
= [2] refers to fixed displacement in z direction, and bc = [0, 1] means fixed displacement in x and y-directions.
label specfies the name of the nodeset in ExodusII file from CUBIT/Trelis that defines the boundary. db_initial.
label specfies the label for the spatial database which is required for informative error messages.

3. Faults

interfaces specifies an array containing the fault interfaces. Here we have one fault interface so we provide an array
containing a single interface.

[pylithapp.timedependent.interfaces] fault specifies the type of fault interface condition. For this example
we want to prescribe the fault slip, so the interface type is set to FaultCohesiveKin.

[pylithapp.timedependent.interfaces.fault]

label specifies the name of the nodeset in CUBIT/Trelis that defines the fault interface.

edge specifies the name of the nodeset in CUBIT/Trelis marking the buried edges of the fault.

quadrature.cell specifies the discretization components for fault cells. FIATSimplex deals with simplex finite-
element cells, including point, line, triangle, and tetrahedron. We are having triangular cells on our fault interface
mesh so FIATSimplex scheme is chosen here.

quadrature.cell.dimension specifies the dimension of fault cells. The fault cells are 2D in our case.

[pylithapp.timedependent.interface.fault.eq_scrs.rupture.slip_function] Settings for prescribing
the coseismic slip distribution on the fault, including the final slip and slip initiation time.

slip.iohandler.filename specifies the name of the spatial database containing the coseismic slip distribution.

slip.query_type specifies the type of search query to perform. Here we define the slip to be a spatial database with
linear interpolation.

slip_time.data specifies the slip time within an earthquake rupture relative to the origin time.

4. Output

Settings related to output of the solution over the domain, subdomain (ground surface), and synthetic stations.
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output specifies the outputs of simulation. Note that the default output is for the entire domain.

output.station specifies the type of output for the stations.

[pylithapp.timedependent.formulation.output.domain] Settings for domain output.

writer.filename specifies the filename of domain output.

[pylithapp.timedependent.formulation.output.station] Settings for the station outputs.

reader.filename specifies the file with coordinates of stations.

writer.filename specifies the filename of station output.

coordsys specifies coordinate system used in station file.

Similar output parameters for the fault and the materials.

Note:
The above only documents the some parameters that we may change specified to our static simulation. Note that
under this directory, there is also another configuration file pylithapp.cfg. pylithapp.cfg is not a self-contained
simulation configuration file but it specifies the general parameters common to the simulations under this directory.
This file is necessary for running our simulation.
For more functions and information, please browse through the PyLith manual.

13.2.2 Basic structure of a spatial database (.spatialdb) file

After knowing what the configuration files do, let’s learn about the spatial database files under the spatialdb directory.

1. Slip_distribution.spatialdb

This spatial database file specifies the distribution of slip on the fault surface. The slip is dependent on the x and y-
directions but independent of the depth.

SPATIAL.ascii 1 the magic header for spatial database files in ASCII format.

SimpleDB specifies spatial database files contain a header describing the set of points and then the data with each line
listing the coordinates of a point followed by the values of the fields for that point.

num-values number of values in the database

value-names specifies the names and the order of the values as they appear in the data. Note that the names of the
values must correspond to the names PyLith requests in querying the database. Here we are having the slip distributions
in three different directions - left-lateral (along-strike), reverse (along-dip), and fault-opening (fault-normal).

value-units specifies the units of the values in Python syntax (e.g. m, kg/m**3).

num-locs specifies the number of locations where values are given.

data-dim specifies the locations of data points form a line.

space-dim specifies the spatial dimension in which data resides.

cs-data specifies the coordinate system associated with the coordinates of the locations where data is given. We are
using a Cartesian coordinate system here.

to-meters specifies the coordinates in km.
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space-dim specifies the spatial dimension of the coordinate system. Note that this value must match the one associated
with the database.

2. mat_concrust_1D.spatialdb

This spatial database file specifies the material properties. Here we prescribe depth dependent material properties -
density, compressional wave velocity vp, and shear wave velocity vs. The parameter setting is basically the same with
the spatial database file about slip distribution as illustrated above except value-names, value-units, and data-dim
are changed.

13.2.3 Running the static simulation

Now that we have a general picture of the files required for our simulation, let’s run the simulation.

$ cd your_working_directory/pylith_static/
$ pylith Nepal_kinematic_model.cfg

Congrats on running your first simulation!

13.3 Visualizing results

After finishing the simulation, you should be able to see different output files under the output directory. In this tutorial,
you will learn how to process the fault output in .h5 format using Python. Hierarchical Data Format (HDF) is a set
of file formats (HDF4, HDF5) designed to store and organize large amounts of scientific data. We assume that you
already have some experience of using Python.

13.3.1 How to install h5py

$ conda create --name pylith
$ conda activate pylith
$ conda install h5py

Please also make sure your have installed matplotlib in your environment. Now, let’s run the following commands.

1. Import the necessary packages

import h5py
import matplotlib.pyplot as plt

2. Read the .h5 files
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filename = 'your_directory/output/Nepal_kinematic_model-fault.h5'
f = h5py.File(filename,'r')
fields = list(f)

If you check fields, you would realize that there are four fields in this file - geometry, time, topology, and vertex_fields.
In this tutorial, we will plot results using data from the vertices under geometry, and the slip and traction change under
vertex_fields. For your reference, the figure below illustrates the general layout of a PyLith HDF5 file (extracted
from the PyLith manual).

figure 2. General layout of a PyLith HDF5 file. The orange rectangles with rounded corners identify the groups and
the blue rectangles with sharp corners identify the datasets. The dimensions of the data sets are shown in parentheses.
Most HDF5 files will contain either vertex_fields or cell_fields but not both. (Adopted from PyLith Manual)

3. Extract the data

slip = f.get('/vertex_fields/slip')
traction_change = f.get('/vertex_fields/traction_change')
geometry = f.get('/geometry')
geometry_vertices = f.get('/geometry/vertices')

x_vertex = geometry_vertices[:,0]/1000 # along dip distance in km
y_vertex = geometry_vertices[:,1]/1000 # along strike distance in km
dip_slip = slip[:,:,1] # updip slip in m
lateral_slip = slip[:,:,0] # left lateral slip in m
dip_traction = traction_change[:,:,1]/10**6 # updip traction in MPa
lateral_traction = traction_change[:,:,0]/10**6 # left lateral traction in MPa
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4. Plot the slip distribution and traction change

fig = plt.figure(facecolor='white', figsize=(14, 14))
size = 13

ax1 = fig.add_subplot(221, aspect='equal')
scat = ax1.scatter(x_vertex,y_vertex, s = size,c=dip_slip,cmap = 'jet', vmin = 0, vmax =␣
→˓5.5)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.title('Updip slip',size = 14)
ax1.set_xlabel('along-dip (km)', size = 12)
ax1.set_ylabel('along-strike (km)', size = 12)
cbar = fig.colorbar(scat,ax=ax1)
cbar.ax.tick_params(labelsize=10)
ax1.spines['right'].set_visible(False)
ax1.spines['top'].set_visible(False)

ax2 = fig.add_subplot(222, aspect='equal')
scat = ax2.scatter(x_vertex,y_vertex, s = size,c=dip_traction,cmap = 'seismic', vmin = -
→˓20, vmax = 20)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.title('Updip traction change',size = 14)
ax2.set_xlabel('along-dip (km)', size = 12)
ax2.set_ylabel('along-strike (km)', size = 12)
cbar = fig.colorbar(scat,ax=ax2)
cbar.ax.tick_params(labelsize=10)
ax2.spines['right'].set_visible(False)
ax2.spines['top'].set_visible(False)

ax3 = fig.add_subplot(223, aspect='equal')
reversed_map = plt.cm.get_cmap('jet').reversed()
scat = ax3.scatter(x_vertex,y_vertex, s = size,c=lateral_slip,cmap = reversed_map, vmin␣
→˓= -5.5, vmax = 0)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.title('Left lateral slip',size = 14)
ax3.set_xlabel('along-dip (km)', size = 12)
ax3.set_ylabel('along-strike (km)', size = 12)
cbar = fig.colorbar(scat,ax=ax3)
cbar.ax.tick_params(labelsize=10)
ax3.spines['right'].set_visible(False)
ax3.spines['top'].set_visible(False)
#plt.ylim([-10, 210])

ax4 = fig.add_subplot(224, aspect='equal')
scat = ax4.scatter(x_vertex,y_vertex, s = size,c=lateral_traction,cmap = 'seismic', vmin␣
→˓= -20, vmax = 20)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.title('Left lateral traction change',size = 14)

(continues on next page)
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(continued from previous page)

ax4.set_xlabel('along-dip (km)', size = 12)
ax4.set_ylabel('along-strike (km)', size = 12)
cbar = fig.colorbar(scat,ax=ax4)
cbar.ax.tick_params(labelsize=10)
ax4.spines['right'].set_visible(False)
ax4.spines['top'].set_visible(False)

plt.tight_layout()
plt.show()

You should be able to generate the following plot.

figure 3. A plot of the prescribed slip distributions and their corresponding stress changes
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CHAPTER

FOURTEEN

DYNAMIC RUPTURE SIMULATION

14.1 Brief introduction

Dynamic modeling of earthquakes provides important insights in the physics of earthquake rupture processes. For
example, earthquake initiation, propagation, arrest, afterslip, locking, and interseismic stress accumulation can be
solved. In particular, dynamic earthquake rupture codes compute the physical earthquake behaviors over short time
scales, producing possible earthquake size, fault slip amount, ground motion, and crustal deformation, which are crucial
for risk assessment.

Currently, dynamic rupture simulations are actively used in seismology research for reconstructing well-recorded earth-
quakes as well as investigating the complex factors controlling earthquakes, such as fault geometry, fault frictional
properties, and initial stresses.

14.1.1 Aim of this module

There are different dynamic earthquake rupture codes for a range of code types, including finite element, discontinuous
Galerkin finite element, and spectral element methods. In this module, we will focus on PyLith which is a finite-element
code.

In this tutorial, we are going to conduct a dynamic rupture simulation using a simple 3D example. As illustrated in the
below figure, the inputs of PyLith requires the fault geometry and rock properties, initial stresses, and fault friction.

figure 1. Key ingredients of a dynamic (spontaneous) earthquake rupture simulation (Harris et al. 2018)
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The fault geometry is described by the given mesh. In this example, we will assume the materials to be elastic. For
the rock properties, we will use a spatial database to specify a simple depth-dependent material properties, including
density, compressional wave velocity (vp), and shear wave velocity (vs).

figure 2. 3D mesh given in this tutorial with dimensions in kilometers

There are different fault frictional laws. Here we are going to introduce the linear slip-weakening law, which is described
by yield strength/stress, initial stress, sliding-friction/dynamic stress, and critical slip distance dc. Yield strength/stress
is the maximum stress level that can be applied before the fault slips. Sliding friction is the background stress level.
The difference between the initial stress and the yield strength is known as the strength excess. A fault has to overcome
this strength excess to allow ruptures.

figure 3. Schematic diagram of linear slip-weakening model

We can also take a look at the equation for the traction on the fault plane using linear slip-weakening law. When the fault
slip (d) is within the critical slip distance (dc), the stress level (Tf) decreases linearly from the static (Ts) to dynamic
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level (Td). When the fault slip exceeds the critical slip distance, the stress level is the same as the sliding friction.

In PyLith, we would use friction coefficients to specify the frictional properties of the fault. Yield strength is the
product of static coefficient and fault normal traction while sliding friction is the product of dynamic coefficient and
fault normal traction. In this example, we are using homogeneous initial stresses and dynamic stress on fault. To initiate
the rupture, we lower the yield stress below the initial stress level within a circular zone. You can also visualize the
yield strength, initial stress, and dynamic stress as the following plot.

figure 4. Plot of the stresses on the fault in our example

Now, you already have a general picture of our problem in this tutorial. In the following, you will learn:

1. the input parameters
2. initiating a rupture simulation
3. visualizing the output

Note:
Here we assume that you have already installed and initialized PyLith. If not, you may refer to our module on static
simulations .
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14.2 Simple 3D case study - Nepal

1. Download the tutorial package pylith_dynamic.tar.gz and move it to your working directory
2. Run this command to decompress the package

$ tar xvf pylith_dynamic.tar.gz

3. ls different folders in the directory to familiarize yourself with the different files required for a dynamic simulation

For running the dynamic simulation, you will need configuration files (.cfg) that specifies the problem, mesh (.exo)
where the simulation takes place, spatial database files (.spatialdb) that describes the variables in space. Here we have
three spatial database files - material property, frictional property, and traction. Since the mesh generating softwares
are commercial, only the configuration and spatial database files will be illustrated in the following.

14.2.1 Basic structure of a configuration (.cfg) file

Now, let’s take a took at the dynamic_rupture_model.cfg under the pylith_dynamic directory. For a simulation in
PyLith, you would need a configuration file (.cfg) which specifies the basic parameters of the simulation. Many of the
commands are the same with those used in a static simulation so the following will only introduce some parameters
specified for dynamic simulations.

1. Problem

simulations. normalizer used to nondimensionalize the equations. shear_wave_speed specifies the shear wave
speed used to nondimensionalize length and pressure (default is 3.0 km/s). mass_density specifies the mass density
to nondimensionalize density and pressure (default is 3.0e+3 kg/m3). wave_period specifies the period of seismic
waves used to nondimensionalize time (default is 1.0 s).

2. Boundary condition

pylith.bc.AbsorbingDampers specifies absorbing boundary condition. Note that this function does not perfectly
absorb all incident waves. Please refer to the manual for more details.

3. Faults

pylith.faults.FaultCohesiveDyn specifies dynamic fault interface. pylith.friction.SlipWeakening spec-
ifies linear slip-weakening friction fault constitutive model. There are also other friction models, e.g. rate and
state friction, and linear time-weakening friction model. friction.db_properties.idhandler.filename spec-
ifies the filename for the friction parameters. traction_perturbation specifies initial tractions on fault surface.
db_initial.data specifies the left lateral shear traction, updip shear traction, and normal traction (tension is posi-
tive, compression is negative) to be 0 MPa, 55 MPa, -100 MPa.

178 Chapter 14. Dynamic Rupture Simulation

https://cuseistut.readthedocs.io/en/latest/pylith_static/index.html


CUSeisTut, Release 0.0.1

Note:
The above only documents the some parameters that we may change specified to our static simulation. Note that
under this directory, there is also another configuration file pylithapp.cfg. pylithapp.cfg is not a self-contained
simulation configuration file but it specifies the general parameters common to the simulations under this directory.
This file is necessary for running our simulation.
For more functions and information, please browse through the PyLith manual.

14.2.2 Basic structure of a spatial database (.spatialdb) file

After knowing what the configuration files do, let’s learn about the spatial database files under the spatialdb directory.
The structure and parameter settings of the spatial database files used here are basically the same with those introduced
in the static simulation tutorial but their contents are different, thus value-names, value-units, and data-dim are
changed.

1. friction.spatialdb

This spatial database file specifies the parameters required in the frictional law. As we are using the linear slip-
weakening friction model, the static coefficient, dynamic coefficient, critical slip distance, and cohesive stress are
specified in this file.

2. mat_concrust_1D.spatialdb

This spatial database file specifies the material properties. Here we prescribe depth dependent material properties -
density, compressional wave velocity vp, and shear wave velocity vs.

14.2.3 Running the dynamic simulation

Now that we have a general picture of the files required for our simulation, let’s run the simulation.

$ cd your_working_directory/pylith_dynamic/
$ pylith dynamic_rupture_model.cfg

Now the current timesteps are displayed in the terminal, and you can wait for the simulation to finish.

14.3 Visualizing results

After finishing the simulation, you should be able to see different output files under the output directory. In this tutorial,
you will learn how to process the fault output in .h5 format using Python. Hierarchical Data Format (HDF) is a set
of file formats (HDF4, HDF5) designed to store and organize large amounts of scientific data. We assume that you
already have some experience of using Python and installed h5py. If not, please refer to our static simulation tutorial .
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14.3.1 How to install h5py

$ conda create --name pylith
$ conda activate pylith
$ conda install h5py

Please also make sure your have installed matplotlib in your environment. Now, let’s run the following commands.

1. Import the necessary packages

import h5py
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.animation as manimation

2. Read the .h5 files

filename = 'C:/Users/ypbow/OneDrive/Desktop/mphil/teaching_modules/pylith_dynamic/output/
→˓v5/Nepal_dynamic_model-fault.h5'
f = h5py.File(filename,'r')
fields = list(f)

If you check fields, you would realize that there are four fields in this file - geometry, time, topology, and vertex_fields.
In this tutorial, we will plot results using data from the vertices under geometry, time in time as well as the slip, slip
rate, and traction under vertex_fields. For your reference, the figure below illustrates the general layout of a PyLith
HDF5 file (extracted from the PyLith manual).
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figure 5. General layout of a PyLith HDF5 file. The orange rectangles with rounded corners identify the groups and
the blue rectangles with sharp corners identify the datasets. The dimensions of the data sets are shown in parentheses.
Most HDF5 files will contain either vertex_fields or cell_fields but not both. (Adopted from PyLith Manual)

3. Extract the data

Since our simulation prescribed zero left-lateral shear traction, we will only focus on the updip shear traction and slip
patterns in our plot.

time = f.get('/time')
slip = f.get('/vertex_fields/slip')
slip_rate = f.get('/vertex_fields/slip_rate')
traction = f.get('/vertex_fields/traction')
geometry_vertices = f.get('/geometry/vertices')

x_vertex = geometry_vertices[:,0]/1000 # along dip distance in km
y_vertex = geometry_vertices[:,1]/1000 # along strike distance in km
dip_slip = slip[:,:,1] # updip slip in m
dip_slip_rate = slip_rate[:,:,1] # updip slip rate in m/s
dip_traction = traction[:,:,1]/10**6 # updip traction in MPa

4. Make an animation for the updip slip distribution, slip rate, and traction during the rupture
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# Define the meta data for the movie
FFMpegWriter = manimation.writers['ffmpeg']
metadata = dict(title='updip_fault_movie', artist='Matplotlib')
writer = FFMpegWriter(fps=5, metadata=metadata)

# Plot figure
fig = plt.figure(facecolor='white', figsize=(14, 14))
size = 15

with writer.saving(fig, "updip_fault.mp4", 100): # or .gif
for t in range(len(time)):

ax1 = fig.add_subplot(131, aspect='equal')
scat = ax1.scatter(x_vertex,y_vertex, s = size,c=dip_slip[t,:],cmap = 'jet',vmin␣

→˓= 0,vmax = 65)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.title('Updip slip',size = 14)
ax1.set_xlabel('along-dip (km)', size = 12)
ax1.set_ylabel('along-strike (km)', size = 12)
plt.xlim([0, 100])
plt.ylim([-10,180])
divider = make_axes_locatable(ax1)
cax = divider.append_axes('right', size='5%', pad=0.05)
cbar1 = fig.colorbar(scat,cax=cax, orientation='vertical')
cbar1.ax.set_title('m')
cbar1.ax.tick_params(labelsize=10)
ax1.spines['right'].set_visible(False)
ax1.spines['top'].set_visible(False)

ax2 = fig.add_subplot(132, aspect='equal')
reversed_map = plt.cm.get_cmap('inferno').reversed()
scat = ax2.scatter(x_vertex,y_vertex, s = size,c=dip_slip_rate[t,:],cmap =␣

→˓reversed_map,vmin = 0,vmax = 4)
plt.xticks(fontsize=11)
plt.yticks(fontsize=11)
plt.title('Updip slip rate',size = 14)
ax2.set_xlabel('along-dip (km)', size = 12)
ax2.set_ylabel('along-strike (km)', size = 12)
plt.xlim([0, 100])
plt.ylim([-10,180])
divider = make_axes_locatable(ax2)
cax = divider.append_axes('right', size='5%', pad=0.05)
cbar2 = fig.colorbar(scat,cax=cax, orientation='vertical')
cbar2.ax.set_title('m/s')
cbar2.ax.tick_params(labelsize=10)
ax2.spines['right'].set_visible(False)
ax2.spines['top'].set_visible(False)

ax3 = fig.add_subplot(133, aspect='equal')
reversed_map2 = plt.cm.get_cmap('viridis').reversed()
scat = ax3.scatter(x_vertex,y_vertex, s = size,c=dip_traction[t,:],cmap =␣

→˓reversed_map2,vmin = 0,vmax = 60)
plt.xticks(fontsize=11)

(continues on next page)
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(continued from previous page)

plt.yticks(fontsize=11)
plt.title('Updip traction',size = 14)
ax3.set_xlabel('along-dip (km)', size = 12)
ax3.set_ylabel('along-strike (km)', size = 12)
plt.xlim([0, 100])
plt.ylim([-10,180])
divider = make_axes_locatable(ax3)
cax = divider.append_axes('right', size='5%', pad=0.05)
cbar3 = fig.colorbar(scat,cax=cax, orientation='vertical')
cbar3.ax.set_title('MPa')
cbar3.ax.tick_params(labelsize=10)
ax3.spines['right'].set_visible(False)
ax3.spines['top'].set_visible(False)

fig.suptitle('Time = '+str(t)+' s', y = 0.77,size = 17)
plt.tight_layout()
#plt.show()
writer.grab_frame()

You should be able to generate the following animation.

figure 6. An animation of the updip slip distribution, slip rate, and traction during the rupture
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CHAPTER

FIFTEEN

BODY WAVE TOMOGRAPHY

15.1 The significance of velocity model in seismology

Velocity is the essential physical property of underground objects. It can be used to detect the presence (location and
size) of different geological objects underground and can be used to search for oil and metal deposits. Furthermore,
velocity models can be used to investigate the evolution of the earth, as well as the location and origin of earthquakes.
Body waves and surface waves are two types of seismic waves. For velocity inversion, we can use body waves (P- and
S-waves), surface waves, or joint body waves and surface waves. There are many velocity inversion methods, such as
one-dimensional model inversion, tomographic velocity inversion, and full waveform inversion. These methods have
different computational efficiency and accuracy. The research method to use is determined by the accuracy requirements
of the research objectives, the quality of seismic data, and the economic cost. Here we introduce a seismic traveltime
tomographic inversion method. It uses first arrivals of body waves and plays an important role in detecting the internal
structure of the solid earth.

15.2 Brief introduction of the tomography inversion method-TomoDD

TomoDD is a local-scale (<100 km) seismic tomography software based on ray travel time. It is a gird-based 3-D
velocity inversion method that uses absolute and relative arrival times to invert both the velocity structure and the event
location. The relative arrival time is the differential arrival time of the event pair. Relative arrival times can reduce
systematic errors and thus generate more accurate velocity models than standard tomography methods that only use
absolute arrival times. TomoDD is an optimization inversion method in which the LSQR algorithm (Paige et al., 1982)
is used to minimize the residual between forward data and observed data, so as to obtain the final velocity model. The
forward travel time calculation is computed by the pseudo-bending ray tracing algorithm (Koketsu and Sekine, 1998).

Note:
Professor Haijiang Zhang of the University of Science and Technology of China and Professor Clifford H. Thurber of
the University of Wisconsin-Madison collaborated on the software. Thanks to Prof. Haijiang Zhang and his team
members for their sharing of TomoDD codes and tutorials. TomoDD is modified from hypoDD (Waldhauser 2001), so it
is recommended to learn hypoDD before you learn TomoDD.
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15.2.1 An introduction to the use of TomoDD software

The use of TomoDD software mainly consists of three steps: 1) Preparation of input data; 2) Modify parameter files and
perform field data inversion; 3) Resolution test of inversion results. Here we give a practical data processing example
to illustrate the use of the TomoDD software. Download the TomoDD example package here. After unzipping, we can
see that the package contains four folders. The Doc folder stores the input/output parameters and file format description
files of TomoDD, as well as two pieces of literatures related to TomoDD. The folder Example shows an actual velocity
inversion case. The Script folder shows some MATLAB drawing scripts, and the text file named illustration
shows how to use them. The folder Src contains TomoDD’s source code as well as the code for calculating differential
arrival times. The platform and software needed to run the program: ubuntu, gfortran, matlab.

1 preparation of input data

1.1 Prepare the seismic phase file (phase.dat) and station file (station.dat)

1.1.1 Seismic phase file: the format of this file is shown below (as shown in Example/ph2dt)

Figure 1. The format of the seismic phase file. Lines that begin with # represent event information, while lines that do
not begin with # represent the station that received the event.

The meaning of the event and the station line is:

# Year Month day hour minute second latitude longitude depth (km) EH ␣
→˓EV RMS Event ID
Station name travel time data quality seismic phase
......

Note:
The data quality value is generally between 0 and 3. If it is greater than 3, the data will be removed.
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1.1.2 Seismic phase file: the format of this file is shown below (as shown in Example/ph2dt)

Figure 2. The format of the seismic phase file

The meaning of each line is:

Station name Latitude longitude elevation (m)
......

1.2 Calculating absolute arrival times (absolute.dat), differential arrival times of event pair (dt.ct)
and event information (event.dat).

1.2.1 Compile program (input: ph2dt.inc; output: ph2dtN3)

a. Change the path to Src/ph2dt/include and change the three parameters in ph2dt.inc: MEV,
MSTA, MOBS.
b. Change the path to Src/ph2dt and use the following two command: make clean; make. Then we
can obtain the executable file named ph2dtN3. make clean means deleting the files generated by the
previous compilation, make means compiling the code and generating executable files.

Note:
A detailed illustration for this subprogram is provided in Waldhauser, F. (2001). HypoDD A program to compute
double difference Hypocenter Locations, pages 4-6 and 15-16.

1.2.2 Execute the generated compiler to calculate differential times (input: ph2dt.inp; output:
absolute.dat, dt.ct, event.dat)

Copy the executable file ph2dtN3 to the folder Example/ph2dt and edit the parameter file ph2dt.inp in that folder.
Then, enter ./ph2dtN3 ph2dt.inp in the command line, and click enter to complete.
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1.2.3 Convert the resulting event.dat file to the data format required by TomoDD, as shown below

awk -f addEve0.awk event.dat > event.dat

At this point, we have all the data we need for TomoDD software, which are absolute.dat, dt.ct, event.dat,
station.dat.

2 Inversion example

2.1 Preparation of the initial velocity model

1 The initial velocity model may be given a transversely homogeneous gradient model increasing
by depth.

2 In addition, the initial velocity model can also be obtained by using the VELEST (Kissling et al., 1994)
program.

The format of the initial velocity model is as follows

Figure 3. The format of the initial velocity model. bld is 1 or 0.1 or 0.01, which depends on the minimum precision of
the grid points in the x, y, and z directions. nx, ny, and nz are the number of grid nodes in x, y and z directions. xn(1),
xn(nx), yn(1), yn(ny), zn(1) and zn(nz) are boundary nodes that must be large enough to hold all the events and
stations.

2.2 TomoDD source code compilation: tomoDD-SE

2.2.1 Allocate the memory required by the program by modifying the following parameter file

a. Under the folder Src/tomoDD-SE/include, modify the following parameters of RaySPDR.inc:

maxnx—maximum number of nodes in x direction

maxny— maximum number of nodes in y direction

maxnz— maximum number of nodes in z direction

mxpari— maximum number of parameters to invert for.
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maxpar— maximum number of potential parameters that could be included in the inversion.
For tomoDD, mxpari is equal to maxpar. Both of them should be at least equal to iuses*(maxnz-
2)*(maxny-2)*(maxnz-2).

b. Under the folder Src/tomoDD-SE/include, modify the following parameters of tomoFDD.inc:

MAXEVE: maximum number of events used in the inversion.

MAXSTA: maximum number of stations used in the inversion.

MAXDATA: maximum number of phase data including both absolute and differential data.

MAXNODE: maximum number of inversion nodes for each ray to sample (~4*MAXNZ).

MAXND: it is used to control the maximum number of nonzero slowness partial derivatives
(MAXND*MAXDATA) (<4*MAXNZ).

2.2.2 Compile program

In the folder Src/tomoDD-SE, run make clean and make in sequence to obtain the executable file tomoDD-SE for
inversion.

Note:
For 32-bit computers: use Makefile.32 & Makefile.32_syn; Terminal operation: make clean -f
Makefile.32; make -f Makefile.32 and make clean -f Makefile.32_syn; make -f
Makefile.32_syn

For 64-bit computers: use Makefile & Makefile_syn; Terminal operation: make clean; make and make clean
-f Makefile_syn; make -f Makefile_syn

Makefile.32_syn and Makefile_syn are used to generate the forward simulation executable, Makefile.32 and
Makefile are used to generate velocity inversion executables.

It requires downloading an older version of the gfortran compiler, such as gfortran 4.7 or lower, updating the
compiler name in the Makefile (line 5) to the newly downloaded version, and then recompiling.

2.3 Preparation of parameter file: tomoDD-SE.inp

This file is shown in Example/RealData-Inversion. Change the inversion parameters in the file according to the
filed data, and the meaning of the parameters is clearly explained in the parameter file.

For parameter adjusting, we need to emphasize the following points:

a. The absolute data is given a large weight (WTDD) to invert the overall velocity structure; In order to better
constrain the source region structure, more weight (WTCTP, WTCTS) is given to the differential arrival times
data.
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b. Since the convergence of velocity in joint inversion is faster than that of seismic location, it is suggested to add
a location-only inversion (JOINT = 0) after each joint inversion.

c. How to select WRCT, WRCC, WDCT and WDCC in each group of iteration parameters?

WRCT, WRCC: The program will weight each data according to its residual. That is, the larger the residual
of a data, the smaller its weight, or even 0. WDCT, WDCC: The program will weight the data according
to the distance between earthquakes. That is, the greater the distance between earthquakes, the smaller the
weight will be. After the distance exceeds the distance, the weight will be 0. None of these parameters can
be used (set to -9). Especially for the joint inversion of velocity and position, WDCT and WDCC may not
be used. It is generally recommended to use WDCT and WDCC unless the data is ideal and the values are
gradually reduced. If the data quality is very high, you are advised to set WDCT and WDCC to about 3.

d. The regularization parameters smooth and damp are selected using the L-curve method. For the L-curve method,
please refer to Sections 5.1 and 5.2 of Parameter Estimation and Inverse Problems (Richard C. Aster et al. 2005).
In Example/RealData-Inversion-Lcurve, the procedure for choosing smooth using L-Curve is shown. The
selection process for damp is the same as for smooth.

2.4 Prepare the folder for input data: Input_Files

As shown in Example\RealData-Inversion\Input_Files, place the prepared files (absolute.dat, dt.ct,
event.dat, station.dat) into it.

2.5 Prepare the folder for output data: Output_Files

The velocity model and source location information generated by inversion procedure are placed in folder Example\
RealData-Inversion\Output_Files. In Output_Files, matlab programs in this folder can be used to draw the
earthquake location and velocity model in three directions of the slice map.

2.6 Perform inversion

After the above five steps are completed, copy the executable files to the folder Example/RealData-Inversion and
execute ./tomoDD SE tomoDD SE.inp in the terminal to carry out velocity inversion. Note that ak135.15.SKS,
layer-16.dat are files that are prepared for the TomoDD executable file. We don’t need to change it.

2.7 Display of inversion results

The figure below shows the velocity model of inversion, which is drawn by the matlab script under the folder Example\
RealData-Inversion\Output_Files.
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Figure 4. Inversion results

2.8 Data residuals

The initial residual file is tomoDD-SE.res.ini, as shown below. Its default output is in the directory where the
program is run.

Figure 5. The initial residual file. IDX represents data type (1 denotes P-wave cross-correlation data; 2 denotes S-wave
cross-correlation data; 3 denotes P-wave directory data; 4 denotes S-wave directory data), RES represents residual (ms).

tomoDD.res represents the travel time residual of the data after final inversion. It can be found in the folder of
Example/RealData-Inversion/Output_Files and is in the same format as the tomoDD-SE.res.ini. We can
make use of the above two data files to plot the changes in residual errors of travel time before and after inversion. See,
for example, the following figure:
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Figure 6. Residual misfit improvement.

Note:
All parameters and file formats used in this tutorial are defined in Doc/tomoDD_manual and can be queried if
necessary

3 Resolution test of inversion results

We need to know the reliability of the obtained velocity model, as well as its horizontal and vertical resolution, in order
to conduct further research on seismogenesis interpretation. We can use the ray distribution density diagram and the
checkerboard test to study the resolution of the velocity model.

3.1 Ray distribution density

The script extract_dws.awk in the folder Example\RealData-Inversion\Output_Files can be used to ex-
tract the ray density (DWS_P, DWS_S) of each grid point from tomoDD.vel. By doing awk -f extract_DWS.awk
tomoDD.vel at the terminal, we can obtain DWS_P and DWS_S. The data format of DWS_P and DWS_S is the same as
Vp_model.dat and Vs_model.dat

3.2 Synthetic resolution test (checkboard test)

The checkerboard test can be explained as follows: first, the checkerboard velocity model with different grid sizes is
constructed, and then the theoretical observation record is calculated by using the constructed velocity model and the
same recording geometry as in the field. Then, the inversion method is used for the simulated observation record. By
comparing the inversion model with the real checkerboard model, the region with the better inversion of checkerboard
velocity and size is the region with higher resolution. An example is shown in the folder Example/checkerboard.
As follows the specific implementation process:
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3.2.1 Forward modeling and inversion code compilation

Previously, we compiled the executable tomoDD-SE for inversion, so we only need to compile the additional executable
tomoDD-SE_syn for forward modeling. Changeing the folder to Src/tomoDD-SE. By executing make clean -f
Makefile_syn, make -f Makefile_syn in sequence on the terminal, we can obtain the executable tomoDD-SE_syn.

3.2.2 Generate synthetic data

Copy the generated forward and inverse executable files to folder Example/checkerboard. Use the checkerboard
velocity model and the actual recording geometry to simulate the travel time of the first-arrival (the generated data is
put in the folder Syn).

3.2.3 Inversion velocity model

Velocity inversion is carried out by using the calculated travel time and the initial model (the inversion results are
placed in the folder Vel). In this example, checkerboard.pl integrates accurate checkerboard velocity model con-
struction, travel time forward calculation, and velocity inversion. So simply execute the checkerboard.pl in the
folder Example/checkerboard to implement checkerboard testing.

3.2.4 Display of inversion results

The real checkerboard model and the inverted checkerboard model are shown below.

Figure 7. A real checkerboard model
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Figure 8. The inverted checkerboard model

By comparison with Figures. 7 and 8, the inversion accuracy of field data is also higher in the region where velocity
value and checkerboard size are better recovered.
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CHAPTER

SIXTEEN

SURFACE WAVE TOMOGRAPHY

16.1 Introduction to surface waves

Unlike body waves that travel through the earth’s interior, surface waves propagate along the earth’s surface. They
could be generated from earthquakes and travel more slowly that body waves, but correspond to lower-frequency and
higher amplitude in the seismogram. There are two most common types of surface waves in Seismology - Rayleigh
waves and Love waves, which are named after their discoverers Lord Rayleigh and August Love.

Rayleigh waves (or so called ground roll) move both longitudinally and horizontally and result in elliptical movement,
similar to the rolling water waves but against the direction of propagation.

Love waves move horizontally and at the right angles to the direction of propagation, but cannot propagate in water
like S-waves. The shear movement of the ground caused by Love waves is more damaging to the man-made structures.

195



CUSeisTut, Release 0.0.1

16.2 Surface waves observations

Here we provide example waveforms showing the surface waves generated from 2019 M7.1 Ridgecrest
earthquake recorded by IU.HRV station located at Adam Dziewonski Observatory (Oak Ridge),
Massachusetts, USA.

For later use, please first download the waveform data of miniSEED format into your local computer. Also make
sure that ObsPy is also installed since it’s used for reading and processing waveforms.

1. Import necessary modules or functions

# from obspy modules import functions
from obspy import read, UTCDateTime
from obspy.geodetics.base import gps2dist_azimuth
from obspy.core.stream import Stream
# import matplotlib module
import matplotlib.pyplot as plt

2. Read the waveform data and only keep waveforms of location 10

# read the downloaded waveforms into obspy stream object
st = read('./2019-07-06-mw71-central-california-2.miniseed')
# select traces whose location is '10'
# use copy function to aviod processing original stream
st_10 = st.select(location='10').copy()
# from the IRIS webpage about this instrument
# channel 'BH1' azimuth and dip are 0 and 0
# channel 'BH2' azimuth and dip are 90 and 0
# thus, we rename 'BH1' into 'BHN'

(continues on next page)
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(continued from previous page)

# and rename 'BH2' into 'BHE'
# this is useful for waveform rotation
for tr in st_10:

if tr.stats.channel == 'BH1':
tr.stats.channel = 'BHN'

if tr.stats.channel == 'BH2':
tr.stats.channel = 'BHE'

# quick check
st_10.plot()

3. Rotate waveforms from ZNE coordinate system into ZRT coordinate system

# event info
event_otime = UTCDateTime('2019-07-06 03:19:53')
event_longitude = -117.599333
event_latitude = 35.7695
event_depth = 8 # kilometer
event_magnitude = 7.1

(continues on next page)
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(continued from previous page)

# station info
station_longitude = -71.5583
station_latitude = 42.5064
station_elevation = 200.0 # meter
station_depth = 0.0

Compute necessary geometric parameters.

# compute epicentral distance, azimuth, and back azimuth
# for this earthquake-station pair
dist_in_m, az, baz = gps2dist_azimuth(event_latitude, event_longitude, station_latitude,␣
→˓station_longitude)
print('epicentral distance is: %.2f m'%dist_in_m)
print('azimuth is: %.2f'%az)
print('back azimuth is: %.2f'%baz)

epicentral distance is: 3999969.28 m

azimuth is: 64.89

back azimuth is: 274.97

# use the rotate function to rotate waveforms
# from ZNE coordinate system to ZRT coordinate system
st_10.rotate('NE->RT', back_azimuth=baz)
# quick check
# Note that Love wave in the transverse component
# Rayleigh wave in the radial and vertical components
st_10.plot()
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Clearly, We can see that surface waves arrive after the body waves and have much larger amplitude.

16.3 Phase shift of Rayleigh waves

Because Rayleigh waves correspond to elliptical movement in a vertical plane pointed in the direction in which the
waves are travelling, thus the ground motions in radial and vertical directions should have phase shift.

Here we can apply a narrow bandpass filter to the waveforms and then plot them together to check the abovementioned
phase shift phenomenon.

# first select vertical and radial components for analysis
st_BHRZ = st_10.select(component='[RZ]').copy()
# remove mean, linear trend, and taper at both ends
st_BHRZ.detrend('demean').detrend('linear').taper(0.05)
# apply a narrow bandpass filter to the raw waveform
# in this example: 8 s-12 s
st_BHRZ.filter('bandpass', freqmin=1/12., freqmax=1/8., corners=2, zerophase=True)
# further zoom into the Rayleigh wave part

(continues on next page)
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(continued from previous page)

st_ray = st_BHRZ.slice(starttime=UTCDateTime('2019-07-06 03:41:00'), endtime=UTCDateTime(
→˓'2019-07-06 03:42:30'))

Note: Exercise: try to change starttime and endtime to see if phase delay exists in other time windows.

# plot both traces together
# can you observe the phase shift?
fig = plt.figure(figsize=(8, 4), dpi=200)
ax = fig.add_subplot(1, 1, 1)
ax.plot(st_ray[0].times("matplotlib"), st_ray[0].data, "b-", label='Radial')
ax.plot(st_ray[1].times("matplotlib"), st_ray[1].data, "r-", label='vertical')
ax.xaxis_date()
fig.autofmt_xdate()
plt.legend(loc='upper right')
plt.show()

16.4 Dispersion of surface waves

Since longer period surface waves would penetrate deeper into higher speed layer, they will travel faster. As a result,
velocities at a number of periods are different, this is so called surface wave dispersion.

For the sake of simplicity, here we only show the dispersion analysis of Love wave by applying few bandpass filters and
measure the corresponding group velocity dispersion curve.

1. select transverse component waveform and set several period bands

# now only select transverse component for further analysis
tr = st_10.select(component='T')[0]
# now choose a set of period bands
# and their units are in second
period_bands = [[10, 20],

(continues on next page)
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[20, 30],
[30, 40],
[40, 50]]

2. save raw waveform into a stram and append filtered waveforms

# first create an empty stream
st_BHT = Stream()
# the first trace is raw waveform without filtering
st_BHT += tr
# similar to the above loop except the last plot line is changed
for period_band in period_bands:

freq_high, freq_low = 1./period_band[0], 1./period_band[1]
tr_copy = tr.copy()
tr_copy.detrend('demean').detrend('linear').taper(0.05)
tr_copy.filter('bandpass', freqmin=freq_low, freqmax=freq_high, corners=2,␣

→˓zerophase=True)
st_BHT += tr_copy

# then let's zoom-in
st_BHT.trim(starttime=UTCDateTime('2019-07-06 03:30:00'), endtime=UTCDateTime('2019-07-
→˓06 03:50:00'))
# quick plot with some newly arguments specified to make sure all traces share the same␣
→˓x-axis
st_BHT.plot(equal_scale=False, automerge=False)
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3. measure group velocities at these periods

# 1. take 30 s to 40 s bandpass filtered waveform as an example
data3040 = st_BHT[3].data.copy()
# ensure event original time corresponds to 0 s
time3040 = st_BHT[3].times() + (st_BHT[3].stats.starttime - event_otime)
# 2. perform Hilbert transform to get envelope (unnecessary to know details)
envelope = np.abs(hilbert(data3040))
# 3. "measure the time where largest amplitude observed" - here for simplicity of␣
→˓analysis
indexmax = np.argmax(envelope)
travtime = time3040[indexmax]
# 4. compute group velocity by dividing distance by travel time
velocity = dist_in_m * 0.001 / travtime
# 5. print results
print('The distance is %.4f km, and travel time is %.2f s'%(dist_in_m * 0.001,␣
→˓travtime))
print('Thus, the corresponding group velocity is %.4f km/s'%velocity)
# simple plot using pyplot
plt.figure(figsize=(6, 2), dpi=100)
plt.plot(time3040, data3040, 'k-')
plt.plot(time3040, envelope, 'r-')
plt.axvline(travtime, 0.85, 1, color='b', lw=3)
plt.xlim(time3040[0], time3040[-1])
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.show();

The distance is 3999.9693 km, and travel time is 1121.84 s

Thus, the corresponding group velocity is 3.5655 km/s

4. repeat the above process for other period bands
After changing to different period bands and re-run the step 3, we can get the following results:

period traveltime velocity
10-20s 1175.52s 3.4027km/s
20-30s 1157.97s 3.4543km/s
30-40s 1121.84s 3.5655km/s
40-50s 1066.54s 3.7504km/s

5. plot the results
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# Now if we let each center period represent the period band
center_periods = [15, 25, 35, 45]
group_velocities = [3.4027, 3.4543, 3.5655, 3.7504]
# then show the period-velocity curve (i.e., dispersion curve)
plt.figure(figsize=(4, 4), dpi=100)
plt.plot(center_periods, group_velocities, 'ks--', markersize=10)
plt.xlabel('Period (sec)')
plt.ylabel('Group velocity (km/sec)')
plt.ylim(2.5, 4.5)
plt.show();

Above all, this tutorial only gives a simple introduction to the ideas of surface waves and their dispersion, through
which you may have a better understanding of surface waves.

Note: Exercise: Search a teleseismic earthquake that can generate clear surface waves (http://ds.iris.edu/wilber3/
find_event) and finish the following tasks
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1. Make a map view plot to show the position of the earthquake and the seismic station you chose. (refer to the
GMT tutorial).

2. Request the seismograms at the station by Obspy (refer to the ObsPy tutorial).

3. Perform phase delay and dispersion analysis on the requested waveforms.

16.5 Compute theoretical dispersion curve

16.6 Invert observed dispersion curve for 1D velocity
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SEVENTEEN

AMBIENT NOISE CROSS CORRELATION

In this tutorial, we will introduce why and how to compute cross-correlation functions (CCFs) from seismic ambient
noise data.

17.1 A Brief Introdcution of Ambient Noise Cross-correlation

17.1.1 1.1 What is Ambient Noise?

In seismology, the term noise refers to ground motion which is recorded in the absence of an identifiable source of
seismic energy, such as an earthquake. In particular, seismic noise is the weak, low-frequency seismic signal originating
from randomly distributed sources. The continuous interaction of low frequency (<1Hz) oceanic surface waves (swells)
with the Earth’s crust is the main cause of natural ambient noise and is observed globally (Aki and Richards).

It is often discarded and cannot be used for geophysical applications, but not always. Seismic noise can be utilized for
earth imaging in the border sense, i.e., structural analysis of crust, global tomography, and monitoring velocity changes
along faults and volcanic regions. For instance, the cross-correlation of seismic noise reflects the medium properties
along the prorogation path.

Note: This process is known as Seismic noise interferometry (SNI).

17.1.2 1.2 Ambient noise cross correlation

Given two seismometers, 𝑢1 and 𝑢2, placed at some distance apart on the surface, the stations will record ground
motion as a function of time: 𝑢1(𝑡) and 𝑢2(𝑡). Over long periods of time, the cross-correlation of ground motions of
𝑢1(𝑡) and 𝑢2(𝑡)

12() =1 ()2(+)

yields a band-limited approximation of the elastodynamic Green’s function, or impulse response, between 𝑢1 and 𝑢2.
We call 𝐶12(𝜏) the time-domain cross-correlation function.
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Figure 01: Typical setup for Ambient Noise Cross-Correlation

A useful way to understand the role of cross-correlation in SNI is that it highlights the traveltimes of seismic waves. A
wavefield which has travelled between two stations will cause a similar signal to be recorded at each, shifted in time:
the cross-correlation function (CCF) of the records will therefore contain a peak at a time lag which corresponds to the
traveltime of the wavefield between the two stations (Fig.2).

Figure 02: (a) a source of seismic energy (left) is recorded at receivers R1 and R2, causing identical signals separated
by a time (right), corresponding to the travel time of the wavefield between the receivers. (b) the cross-correlation
function of the two records,on which the traveltime is highlighted as a peak.!

Cross-correlation is performed for positive and negative time lags, so CCFs have both positive (“causal”) and negative
(“acausal”) parts. Oceanic noise arrives from all directions, and the noise records which are cross-correlated during
SNI therefore contain energy which has travelled in both directions along an interstation path.

GFs which emerge on noise cross-correlation functions (NCFs) will therefore contain energy in both the causal and
acausal parts, symmetric about zero time lag: the causal part representing energy arriving at station B in response to
an impulsive source at station A, and the acausal part energy arriving at station A in response to a source at station B
(Fig.3). Because GFs are usually assumed to be the same in both directions along a path, the two sides of an NCF can
be treated as representing exactly the same information, but reversed in time.
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Figure 3.Causal and anticausal parts of an NCF. (a) Idealised NCF for the cross-correlation order station A to station
B. The arrows indicate the energy path which is represented by the positive and negative parts of the cross-correlation
function. (b) Representation of the noise sources which (theoretically) contribute to the causal and anticausal part of
the station A - station B NCF

17.1.3 1.3 Workflow:

Figure 04: Schematic representation of the data processing scheme
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17.1.4 1.4 Data Preparation and inital processing

The basic step in the data processing method is to prepare waveform data from each station separately. The goal of this
phase is to accentuate broad-band ambient noise by removing earthquake signals and instrumental irregularities that
tend to obscure it.

1. The mean and trend are removed from the data (“rmean” and “rtrend” respectively).

2. The bandpass filtering is applied on data

3. In order to further down-weight the contribution of high-energy arrivals which could obscure the lower amplitude
ambient noise signal, a “one-bit” normalisation is applied after various authors (e.g. Stehly et. al. (2007))

4. Do cross correlation between station pairs

17.2 Tutorial

17.2.1 2.1 Import useful packages from Python library

import obspy
import numpy as np
from obspy import Stream
from obspy.geodetics import gps2dist_azimuth
import matplotlib.pyplot as plt

17.2.2 2.2 Stations information

sta1_lon = 104.462283; sta1_lat = 29.409383
sta2_lon = 104.483083; sta2_lat = 29.478317
dist_m,_,_ = gps2dist_azimuth(sta1_lat,sta1_lon,sta2_lat,sta2_lon)
dist_km = dist_m/1000

Note: Station information can also be directly extracted using obspy.

17.2.3 2.3 Bandpass filter

period_min = 2
period_max = 5
st.filter("bandpass",freqmin=1/period_max,freqmax=1/period_min,zerophase=True)
st_bak = st.copy() #keep a copy of orignal data
st.plot();
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17.2.4 2.4 Plot the waveoforms

st = Stream()
st1 = obspy.read("GS020_BHZ_20200512.mseed") # Load 1 Day Data from Station GS020
st.append(st1[0])
st2 = obspy.read("ML17_BHZ_20200512.mseed") # Load 1 Day Data from Station ML17
st.append(st2[0])
st.detrend("linear")
st.detrend("constant")
st.plot();

17.2.5 2.5 Down-sampling Data

Note: Ambient noise generally conducted in low frequency range, it will reduce computation cost if data is down-
sampled.

print(f"Before down-sampling, station {st[0].stats.station} has data points {st[0].stats.
→˓npts} with sampling rate {st[0].stats.sampling_rate}")
st[0].decimate(factor=5)
print(f"Before down-sampling, station {st[0].stats.station} has data points {st[0].stats.
→˓npts} with sampling rate {st[0].stats.sampling_rate}")

print(f"Before down-sampling, station {st[1].stats.station} has data points {st[1].stats.
→˓npts} with sampling rate {st[1].stats.sampling_rate}")
st[1].decimate(factor=5)
print(f"Before down-sampling, station {st[1].stats.station} has data points {st[1].stats.
→˓npts} with sampling rate {st[1].stats.sampling_rate}")
fs_new = st[0].stats.sampling_rate

Before down-sampling, station GS020 has data points 8640001 with sampling rate 100.0

Before down-sampling, station GS020 has data points 1728001 with sampling rate 20.0

Before down-sampling, station ML17 has data points 8640001 with sampling rate 100.0

Before down-sampling, station ML17 has data points 1728001 with sampling rate 20.0

Note: data is resampled from 100 to 20 Hz.

17.2.6 2.6 One-bit Normalization

To remove the non-stationary events that inevitably lie in seismic records, the so-called one-bit normalization is
commonly applied to the noise data. This processing consists of replacing each sample of a record by its sign.

Note: In “one-bit” normalisation, each data point is replaced with either a 1 or -1, depending on its sign, which remove
the amplitude information from the data.
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st = st_bak.copy()
st[0].data = np.sign(st[0].data)
st[1].data = np.sign(st[1].data)
starttime = st[0].stats.starttime
st.plot(starttime=starttime,endtime=starttime+100 );

17.2.7 2.7 Conduct Cross-Correlation

max_lagtime = 50
max_shift_num = int(np.round(max_lagtime*st[0].stats.sampling_rate))
data1 = st[0].data
data2 = st[1].data
len1 = len(data1)
len2 = len(data2)
min_len = min(len1,len2)
cross_list = []
for shift_num in np.arange(-max_shift_num,max_shift_num+1,1):

if shift_num<0:
correlate_value = np.correlate(data1[:min_len+shift_num],data2[-shift_num:min_

→˓len])
cross_list.append(correlate_value.ravel())

else:
correlate_value = np.correlate(data2[:min_len-shift_num],data1[shift_num:min_

→˓len])
cross_list.append(correlate_value.ravel())

cross_list = np.array(cross_list)
cross_list = cross_list/np.max(cross_list)
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17.2.8 2.8 Plot Results

time = np.linspace(-max_lagtime,max_lagtime,int(2*max_lagtime*fs_new+1))
plt.plot(time,cross_list)
plt.xlabel("Time (s)")
plt.ylabel("Cross-correlation Coefficient")
plt.xlim(-max_lagtime,max_lagtime)

17.2.9 2.5 References:
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